
www.manaraa.com

Software Development Risk Management
Model- a goal-driven approach

Shareeful Islam
Lehrstuhl für Software & Systems Engineering

Institut für Informatik
Technische Universität München

www.manaraa.com

www.manaraa.com

Technische Universität München
Institut für Informatik

Lehrstuhl für Software & Systems Engineering

Software Development Risk Management Model-
a goal-driven approach

Shareeful Islam

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans Michael Gerndt

Prfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Martin Bichler

Die Dissertation wurde am 11.11.2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 25.03.2011 angenommen.

www.manaraa.com

Abstract

Every software project by its inherent nature is unique and contains significant
numbers of uncertainties from various perspectives such as time-to-market, bud-
get and schedule estimation, product deployment or maintenance. If failing to
control these uncertainties, it imposes potential risks not only during the devel-
opment phases but also throughout the life cycle of the product. Software risk
management is an effective tool to control these risks and contributes to increase
the likelihood of project success. Risk management needs to be integrated as early
as possible from a holistic perspective into the development. However a compre-
hensive risk management practice is not always possible due to resource problems,
more emphasize on budget and schedule constraints and difficulties to concretely
estimate the benefit of risk management.

This thesis proposes a Goal-driven Software Development Risk Management Model
(GSRM) that explicitly integrates into the requirements engineering phase. The in-
tegration provides an early warning of potential problems so that both preventive
and corrective actions can be undertaken to avoid the causes of project failure. The
framework is comprised of four layers, i.e., goal, obstacle, assessment and treat-
ment, that support the identification, assessment, treatment and documentation of
risks in relation to project-specific goals. GSRM is implemented in active on-going
software development projects to empirically evaluate its usefulness, particular
advantages and limitations in an industrial context. The results show that goal-
driven approach is suitable for risk management and risk management is well in-
tegrated into requirements engineering phase. It is not always necessary to rank
budget and schedule related goals and risk factors at the highest priority for risk
management. At the early stage of the project risk factors related to estimation,
project management, project scope, requirements, change management and hu-
man (i.e. customer/user and practitioner) and at the later stage risk factors related
to user satisfaction and product usage are more frequent and severely affect meet-
ing the project goals. If project risk factors are beyond the control of a project
manager and project development environment, it is difficult to control the risks.
The results conclude that early risk management practice is necessary and GSRM
contributes to this direction for a successful project outcome.

www.manaraa.com

Zusammenfassung

Jedes Software-Entwicklungsprojekt ist einzigartig und geprägt von schwer plan-
baren Einflussfaktoren, wie time-to-market oder Budget, aber auch von Einflüssen
resultierend aus der Integration und der Wartung. Die Beherrschung dieser Ein-
flussgrößen ist unabdingbar für die Minimierung der Risiken während der En-
twicklung als auch während des gesamtem Software-Lebenszyklus. Software
Risikomanagement stellt ein effektives Mittel zur Risikobeherrschung dar. Häufig
ist ein umfassendes Risikomanagement jedoch aufgrund fehlender Ressourcen
oder fehlendem Domänenwissen nicht realisierbar. Idealerweise muss Risikoman-
agement aber in den gesamten Entwicklungsprozess integriert sein, insbesondere
auch in die ersten Phasen der Enwicklung.
Der Beitrag der Dissertation ist ein Modellierungsframework zum Risikomanage-
ment. Wir schlagen einen zielbasierten Ansatz vor (Engl: Goal-driven Software
Development Risk Management Model (GSRM)) und integrieren diesen in die er-
ste Phase des Entwicklungprozess, in das Requirements Engineering. Diese In-
tegration trägt dazu bei, frühzeitig potentielle Probleme zu erkennen und diese
in Form von korrigierenden Maßnahmen zu umgehen. Das Framework gliedert
sich in vier Abstraktionsebenen, i.e., goal,obstacle, assessment and treatment, die
eine methodische Handlungsrichtlinie zur Identifikation, Dokumentation und Be-
handlung von Risiken in Zusammenhang mit Zielen unterstützt. Die Integration
der Ziele führt insbesondere zu nachvollziehbaren und reproduzierbaren Spezi-
fikationsdokumenten.
Die Tragfähigkeit des Ansatzes wird in Fallstudien unter Einbeziehung laufender
Software-Entwicklungsprojekte hinsichtlich Anwendbarkeit und seiner Vor- und
Nachteile evaluiert. Die Ergebnisse werden sowohl die Integrationsfähigkeit des
Ansatzes in das Requirements Engineering, als auch seine Anwendbarkeit aufzeigen.
Wir werden Beobachtungen darlegen, dass das Risikomanagement unmittelbar
durch die fehlende Einbindung des Projektmanagers in Projektinhalte erschwert
wird, und dass der Projektkontext, wie auch die Projektkomplexität die Risiken
gleichermaßen beeinflussen, unabhängig von der ursprünglichen Risikoeinschätzung
des Projektes.
Wir schließen die Arbeit mit einer Zusammenfassung der Ergebnisse, stellen die
Relevanz eines frühzeitigen Risikomanagements dar und belegen, wie wir mit
dem Beitrag dieser Dissertation dieses Risikomanagement unterstützen.

www.manaraa.com

Acknowledgments

It is very difficult to manage a funded PhD research from Bangladesh specifically
in the field of software engineering. I am very grateful to the scholarship agency
DAAD(German Academic Exchange Service) for giving me an opportunity to pur-
sue my PhD study in a country like Germany. I would like to thank Prof. Manfred
Broy for giving me the opportunity to work in a challenging and competitive re-
search environment and support me in all aspects during the course of the disser-
tation. His support and critical comments made this work much better. I also want
to thank Prof. Dr. Martin Bichler for co-supervising this thesis and providing me
time to discuss the updated status of the thesis.
I would like to thank Siv Hilde Houmb, Telenor GBD& R, & SecureNOK Ltd.,
Norway for her continuous support throughout the work on my dissertation. She
helped me all the way to complete this dissertation from her long experienced as a
risk expert in the industry.
I would also like to thank Axel van Lamsweerde and Robert Darimont for their
valuable suggestion to work with KAOS goal modeling language for risk manage-
ment and permit me to use KAOS goal modeling tools Objectiver version 2.
During my research work, I had collaborations with Jan Jürjens from Technis-
che Universität Dortmund & Fraunhofer-Institute for Software- and Systems-
Engineering (ISST) , Haris Mouratidis from University of East London, Kurt
Schneider and Eric Knauss from Leibniz Universität Hannover and Stefan Wag-
ner and Daniel Mendez-Fernandez from Technische Universität München. And
with whom I published several research papers in the direction of this disserta-
tion. Jan Jürjens also gave me useful insights about how to do research and how to
write papers. I would like to thank all of them.
There are several persons that read (parts of) my dissertation and provided me
very useful comments: Alarico Campetelli, Dmitriy Golubitskiy, Daniel Ratiu
Maximilian Irlbeck , Philipp Neubeck from TUM Germany, Siv Hilde Houmb from
SecureNOK Ltd. Norway. Thanks all of you.
My stay at the chair was made much easier by: Silke Müller, Eleni Nikolaou-Weiss,
Marina Franke, Philipp Neubeck who solved my problems all the time when I
appeared in front of them. Thanks all of you.
Above all, I want to thank my parents, brother, especially my wife and our little
son Maheer to support me while I was struggling to do my research and for giving
me the greatest joy of my life.
At the end, I would also like to thank all the faculty members and stuff of Institute
of Information Technology(IIT), University of Dhaka, Bangladesh for a wonderful
time and every support before starting my PhD work.

www.manaraa.com

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Domain . 2

1.2.1 Overall Goals of the Thesis . 3
1.2.2 Research Question . 3

1.3 Research Contribution . 4
1.4 The Approach . 5
1.5 Empirical Evaluation . 6
1.6 Structure of the Thesis . 7

2 Fundamentals and Related Work 11
2.1 Basic Concepts . 11

2.1.1 Software Risk . 12
2.1.2 Risk Event and Likelihood . 12

2.2 Risk Management in Software Project 13
2.2.1 Principals of Software Risk Management 14
2.2.2 Risk Management Frameworks 15
2.2.3 Risk Management Standards 17
2.2.4 Current Practice of Risk Assessment 18

2.3 Study results on software risk management 19
2.3.1 Risk Factors . 19
2.3.2 Risk Factors in Global Software Development 20
2.3.3 Risk factors impact on software project 21
2.3.4 Software Risk Management Barriers 22
2.3.5 Study Result on Software Project Success factors 22

2.4 Requirements Engineering and Goal-Orientation 23
2.4.1 i*/Tropos . 24
2.4.2 KAOS . 25
2.4.3 Summary of the Current Approaches 26

2.5 Thesis Contributions . 27

3 Subjective Expert Judgement and Bayesian Belief Network 29
3.1 Subjective Expert Judgement . 29
3.2 Bayesian Belief Network (BBN) . 31
3.3 Conclusion . 34

i

www.manaraa.com

4 Holistic View of the Software Development Risk Management 35
4.1 Holistic View of Software Development Risk Management at Early

Development . 35
4.2 Project Success and Failure Factors . 37
4.3 Software Development Components 39

4.3.1 Project Execution . 40
4.3.2 Process . 44
4.3.3 Product . 47
4.3.4 Quality . 48
4.3.5 Testing . 49
4.3.6 Requirements Faults . 49
4.3.7 Operation . 51
4.3.8 Maintenance . 52
4.3.9 Human . 53
4.3.10 Environment (Internal & External) 55

4.4 Model Based Development . 56
4.5 Conclusion . 57

5 Goal-driven Software Development Risk Management Model(GSRM) 59
5.1 GSRM Framework . 59

5.1.1 Levels of Abstraction . 60
5.1.2 Modeling Views . 61
5.1.3 GSRM Layers . 62
5.1.4 Meta-model . 65

5.2 Generic Process Model . 66
5.3 GSRM activities . 68

5.3.1 Activity 1: Initialize Goal-driven Risk Management 68
5.3.2 Activity 2: Identify & Model Goals 72
5.3.3 Activity 3: Identify & Model Obstacles 76
5.3.4 Activity 4: Assess Risk . 78
5.3.5 Activity 5: Treat & Monitor Risk 85
5.3.6 Artifact Type: Risk Specification 90

5.4 Roles & Responsibilities . 91
5.5 Integration of GSRM into Requirements Engineering 93

5.5.1 Artifact Oriented View . 93
5.5.2 Process Oriented View . 97
5.5.3 Initiation of GSRM into Requirements Engineering 100

5.6 Conclusion of GSRM . 101

6 Evaluation 103
6.1 Empirical Evaluation and Data Collection 103

6.1.1 Difficulties for Empirical Study in Software Development
Risk Management . 104

6.1.2 Study Constructs . 106
6.1.3 Validity of Study Results . 106

6.2 Study 1: Goal and Risk Factors in Offshore Outsourced Software
Development . 107
6.2.1 Survey Method . 108
6.2.2 Result of the Survey . 110
6.2.3 Survey Study Conclusions . 112

6.3 Study 2: Integration of Risk Management Activities into Require-
ments Engineering . 112
6.3.1 Demonstration Integration of GSRM into Requirements En-

gineering . 112

ii

www.manaraa.com

6.3.2 Study Result . 115
6.3.3 Discussion . 118
6.3.4 Case Study Conclusions . 120

6.4 Study 3: Implementation and evaluation of a goal-driven risk man-
agement model . 120
6.4.1 Evaluation approach . 120
6.4.2 Evaluation of GSRM . 121
6.4.3 Introduction of GSRM Process 124
6.4.4 Comparison of the Study Result with Previous Research . . . 130
6.4.5 Lessons Learned . 131
6.4.6 Study Validity . 134
6.4.7 Case Study Conclusion . 135

6.5 Goal-Risk Taxonomy . 135
6.6 Empirical Studies Conclusions . 140

7 Conclusion 141
7.1 Outcome of the Research . 141
7.2 Conclusions about Research Questions 143

7.2.1 Research Questions 1 and 2 . 143
7.2.2 Research Questions 3 and 4 . 144

7.3 Conclusions about Empirical Study Results 144
7.4 Limitations of the GSRM . 146
7.5 Future Research . 148
7.6 General Conclusions . 149

A Appendix A: Closed Questions 151

B Appendix B: Open Questions 165

C Appendix C: Checklist for Requirements Errors 167

iii

www.manaraa.com

iv

www.manaraa.com

CHAPTER 1

Introduction

Contents
1.1 Background and Motivation . 1
1.2 Problem Domain . 2
1.3 Research Contribution . 4
1.4 The Approach . 5
1.5 Empirical Evaluation . 6
1.6 Structure of the Thesis . 7

1.1 Background and Motivation

Every software development project has unique demands, both in terms of project
specific features and mostly tacit customer/user expectations. Software project
commonly contains a significant amount of uncertainties, such as continuous
change of project scope to accommodate the latest market demand, requirements
evolution [KS04], imprecise estimation of budget and schedule [FcY04] and high
system complexity. These factors raise the chance of potential risks during the life
cycle of the product. Therefore, software engineering is more prone to risks com-
pared to many other engineering domains. These risks possibly lead to delays,
economic loss, customer dissatisfaction, market refuse and as a whole reduce the
ability to a successful project completion. But software development and its roles
in our society have increased substantially over the past decades. Software be-
comes more important while organizations incorporate the Internet and endeav-
our to operate both the physical and cyber world of the market space [TTL00].
The growth rate of worldwide software cost is 12% per year [Nuk99] and the im-
portance of software is likely to be continuously increased. But, global IT soft-
ware industry stands to lose billions of dollar annually through project failures or
projects that are not delivered according to the specification [Cha05]. The literature
is packed with such horror stories [Gla98]. Uncertainties and their consequences in
software projects should constantly be under control. Software risk management
can be used as a tool to manage these risks and to reason under the high degree of
uncertainties involved.

1

www.manaraa.com

1.2 Problem Domain

Risk management in software development needs to be included as early as pos-
sible during the development ,in particular, within the Requirements Engineering
(RE) phase. The reason for considering risk management within requirements en-
gineering phase is that requirement problems are one of the main causes of project
failure [Gla98]. Problems related to requirement completeness, correctness, stabil-
ity and meeting project goals and objectives are numerous, frequent and continual.
These problems are the most expensive software problems that persist through-
out the life cycle of software product [vL09]. The causes of these problems are
generated from various perspectives including users, practitioners, project exe-
cution or knowledge. Risk management in requirements engineering contributes
to identify and analyze factors related to requirements and other problems from
the early stage. Boehm [Boe81] reported that the cost to fix requirements defects
is 5 times higher during design, 10 times higher during implementation, 20 times
higher during unit testing and up to 200 times higher after the system delivery. Re-
quirements engineering lays the foundation for successful projects development
regarding cost and quality [Bro06, BFI+09]. The precise elaboration of require-
ments supports both subsequent software development processes like architec-
tural design and project management processes like the definition of contractual
agreements [HWFP07].

Risk management in early stage of the software projects is critical and contributes
effectively to increase the likelihood of project success. A project without risk man-
agement admits serious problems such as reworks of artifacts and overruns of cost
and schedule only after the risks appear during the development. The organi-
zations continue to invest time and resources in strategically important software
projects. Therefore managing software development risks that are associated with
organizational key areas turns into a critical area of concern. Thus we are moti-
vated for an effective risk management practice which must be systematic, incur
low overhead to the development and be explicitly included in early stage of software
project.

1.2 Problem Domain

The complexity of software has increased significantly over the years [Bro95]. De-
spite the advancements in technology and development process, software projects
still face similar problems repeatedly. Poor project outcomes persist even though
numerous studies scrutinize and document the causes of project failure. Study
results showed that the causes of most of these failures have little to do with tech-
nical issues even though project managers have a common tendency to concern
more on the technical things. The results also concluded that failed projects suf-
fer from the poor management of people related problems rather than technical
problems [McC96, Lin99]. McManus [McM04] identified that 65% of the project
failures are accounted by management issues and 35% by technical issues. Hu-
mans involved in every part of the software development activities incur errors,
make wrong assumptions and show poor team performance which pose poten-
tial risk [ID08]. Paulk [MCCW93] stated that end user involvement is one of the
most important contributors to successful project development. The current prac-
tice of software risk management concerns more on the goals related to schedule,
cost and quality. Nevertheless, certain goals have gained importance recently such
as outsourcing and co-ordination of the global software development, supporting
critical business processes, time-to-market, produce deployment and assurance of
safety, security and privacy issues. Software development risk management needs
to focus on these goals depending on the specific project context.

2

www.manaraa.com

1 Introduction

At present risk management in software domain is still not a mature discipline.
Several researches [Boe91, Kar95, Kon01, Roy04] contributed to the development of
a single integrated framework for performing software risk management activities.
The problem is not that developers and project managers are not aware about the
importance of risk management and its positive impact to the project’s outcome,
but that risk management is not effectively applied in practice [Rop99, Pfl00]. Risks
are intangible by nature and address issues related not only to present but also to
future. Risk estimation is a difficult undertaking where factors are mostly fuzzy.
This inherent nature of risks makes it difficult to measure the concrete risk man-
agement benefit even if the project succeeds [Ban08]. Visible development costs
always get more attention in the project and lack of resources to perform risk
management are the most potential barriers for risk management [OG09]. Fur-
thermore, project-specific risks are less obvious and more difficult to predict their
impact. Risk perception varies by the project stakeholders in particular among the
management, customer/user, and practitioners based on the roles, responsibilities
and expectations from the project. One can easily overlook or misjudge the risks
[Sch08, ID08]. The project practitioners are not always aware about the methods
and techniques required to perform the activities related to the software develop-
ment risk management.
There is still a lack of comprehensive guidelines on how to integrate risk manage-
ment activities at the early development stage. A survey study result on several
companies concluded that risk management and its integration into development
process is poorly done [NKM08]. If risk management activities are merely em-
ployed from the design phase on, the result may include expensive revision of the
design artifacts or major rework of the elicited requirements. This may also pose
additional problems later on depending on the competence and ability of develop-
ers for late discovered risks, mistakes of the requirements or inconsistent design
and may also end with passive customer/user involvement. Some recent works
have tackled the problem of considering risks in the early phase of system develop-
ment [AG07, BFH08, vL09]. However the focus is more on the requirement related
problems rather than the holistic software development risk perspective. For in-
stance, Lamsweerde [vL09] introduces risk management as a part of requirement
evaluation and the main focus is to ensure completeness of the requirements.

1.2.1 Overall Goals of the Thesis

The main thesis goals are: to develop a systematic and easy to use effective risk manage-
ment practice which can be explicitly integrated in requirements engineering phase.

1.2.2 Research Question

We have articulated the research questions for this dissertation based on our find-
ings from the literature survey and current needs in order to improve the risk man-
agement practice in software projects.

• RQ.1: Can risk management be integrated in the early phase of software
development projects?

• RQ.2: What is the effect of the goal-driven approach on the software risk
management?

• RQ.3: What are the main goals of early development contributing to a suc-
cessful project outcome?

• RQ.4: How can the software development risks be assessed and managed
from a holistic perspective to satisfy the goals?

3

www.manaraa.com

1.3 Research Contribution

1.3 Research Contribution

The novelty of this dissertation is the improvement of the risk management prac-
tice explicitly within the early development stage. Thus the contributions of this
research towards the research questions are summarized as:

1. Goal-driven risk management model from holistic perspective: This re-
search contributes an integrated modeling framework for software develop-
ment risk management, called Goal-driven Software Development Risk Manage-
ment Model(GSRM) [IJH09, Isl09]. The framework is comprised of a concep-
tual model, analysis techniques and a methodology to systematically iden-
tify, model, analyze and control risks to attain the project specific goals.
GSRM includes goals as the objectives, expectations and constraints from
the development components by focusing on the project success factors for
the risk management. The model considers goals beyond schedule, budget
and quality and realizes the importance of motivating project stakeholders in
particular customer/user to take an active part in the software project. It fo-
cuses on the non-technical components such as project execution, customer-
s/users, project participants and usage environment, along with the techni-
cal components such as development process, system specification and tools
as a holistic view for the risk management. Goal-driven approach for risk
management aids to identify both generic and project specific risks, under-
stands their characteristics and provides support for effective control actions
to mitigate the risks.

2. Systematic risk assessment and management during requirements engi-
neering: The proposed model supports an effective, systematic and straight
forward way to manage software risks. We define the activities, tasks, steps
and underlying roles for a detailed goal-driven risk management process
model [IH10, IH11]. We follow an artifact oriented view by considering the
content and associated concept of the individual artifact as work product of
the risk management activities. Artifact oriented view emphasizes on the
results rather than dictating a strict process. It ensures consistency and com-
pleteness among domain-specific results, independent of taken decisions and
chosen methods. Thus artifact orientation, i.e., concepts and attributes and
process model, i.e., activities, tasks and roles are the integration points that
allow to incorporate the risk management activities in the requirements en-
gineering phase. The early integration supports to assess and manage risks
related to the project execution, development environment, operational con-
straints and project stakeholders even before elicitation of the system require-
ments. Goal-oriented Requirement Engineering (GORE) [vL09, BPG+04]
refers to the use of goals, has long been recognized in requirements engineer-
ing community to elicit, evaluate, negotiate, elaborate, structure and docu-
ment requirements. GSRM is a goal-driven approach and extends the KAOS
goal modeling techniques to accommodate the risk management activities.

3. Goal-risk taxonomy: To effectively identify and categorize goals and risk
factors, this research characterizes the software development components
into five different dimensions. They are: project execution, process, prod-
uct, human, and environment (internal and external). Every component is
further described with elements and factors which are relevant for the com-
ponent. This component-element-factor hierarchy supports to identify and cat-
egorize goals and risk factors. We develop a goal-risk taxonomy by following
the basic concept of this research and the results of the empirical investiga-
tion. The taxonomy includes general characteristics of the development com-
ponents which need early attention and a set of goals and risk factors. A total

4

www.manaraa.com

1 Introduction

of 200 closed questions (i.e., as shown in appendix A) and a requirements er-
rors checklist (i.e., as shown in appendix C) are also developed, as a part of
the taxonomy, to identify the risk factors.

1.4 The Approach

We present a risk management model to effectively address the risks that obstruct
the successful project outcomes. The approach explicitly models the relations be-
tween the goals based on the software development components and project suc-
cess indicators with the risk factors that obstruct these goals. Risks are then as-
sessed and suitable control actions are selected to mitigate the risks so that the
project can attain its goals. Therefore, in our approach, it is important to model the
relationship among goals, obstacles and treatment. The reason for choosing goal
modeling language is that goals and risks are complementary entities of a soft-
ware project. A risk is usually defined as negation to a single or multiple goals or
a loss of attainment of some corresponding objectives. Risks always shadow the
goals and certain goals may be risky. The goal-driven approach anchors the risk
management process. It allows to trace and rationalize the risk factors, events and
control actions to the goals. Figure 1.1 depicts the conceptual view of the proposed
approach. The goal-risk model and associated artifacts play the main role of this
approach. Goals are derived from the development components, project stake-
holders’ expectation and project success indicators. These goals are obstructed by
the software risks. Risks are assessed and suitable treatment actions are identified
to attain the goals. We define the goals and software risks as used in our proposed
approach.

Definition:Goals

The Goals are the objectives, expectations and constraints of the stakeholder and de-
velopment components, as prescriptive statements of intents in development, opera-
tion and maintenance of software project whose satisfaction contributes to the overall
project success.

Definition:Software Risks

The Software Risks are obstacles caused by the risk factors and associated events
whose combined consequences raise the chance of single or multiple undesirable cir-
cumstances that obstruct the goals and certainly reduce the likelihood of the project
success.

A successful software development project relies on many factors. The affect of
these factors varies from project to project. Our approach identifies goals from
these factors. Risks are concerned with the negative consequence that directly or
indirectly obstruct these goals. These key definitions are necessary to communi-
cate the scope and contribution of this work. For instance, we consider software
development risks beyond their traditional definition by incorporating links to the
project specific goals and not only budget, schedule and quality. Furthermore, the
goal-risk model and causal relationship model, as shown in Figure 1.1 are the two main
models of the proposed approach. A goal-risk model refines the higher level goal
to sub-goals and includes obstruction links from the risks to the relevant single or
multiple goals. A causal relationship model establishes the link from risk factors
to events and their overall consequence to the goals negation. We consider the

5

www.manaraa.com

1.5 Empirical Evaluation

Goals

Control
actions

Causal
relationship

model

Goal-risk
model

attain

ob
str

uc
ted

 by

Risks

require

influence

construct support

Assess

Development
components

Project
success

indicators

Stakeholders
expectations

Treat &
monitorlead

construct

select

lead

construct lea
d

de
riv

ederive

derive

Figure 1.1: Conceptual view of the proposed approach

Proposed
GSRM

approach

Empirical
investigations

Thesis
contributions

Survey study

Case studies

Thesis
conclusions

Figure 1.2: Empirical Investigation

integration points from artifacts and process oriented perspectives of the require-
ments engineering and risk management. This eases to explicitly integrate the risk
management activities into early requirements engineering phase.

1.5 Empirical Evaluation

We have chosen empirical study to evaluate the proposed approach specifically
the main contribution of this research. We follow survey and case study method
for this purpose and employ action research so that risk management results can

6

www.manaraa.com

1 Introduction

effectively be contributed to mitigate the risks that exist in the project. The studies
focus to assess the usefulness of GSRM. Survey studies results were presented in
the literature to identify the risk factors and their impact on the software projects.
However only few studies focused on risk management impact in software devel-
opment projects. It is also difficult to validate a single method separately in an
active on-going software development project. Furthermore, subjective nature of
the risk, evolution of technology, limited resources and constant pressure to meet
budget and schedule constraints make the task more challenging. Therefore lim-
ited data points exist which consider the usefulness and limitations of risk manage-
ment in software development projects. Our survey study focuses to identify the
goals and risk factors. And the case studies combine action research, where GSRM
is implemented into on-going software development projects. Therefore goals and
risk factors are assessed from the running project context and implemented con-
trol actions are used to mitigate the identified risks. We report the detailed study
design, result, study validity and lessons learned. Figure 1.2 shows empirical eval-
uation by considering the thesis contribution, GSRM and the contribution to the
conclusion. Our result concluded, that goal-driven approach is effective for risk
management and risk management is well integrated into requirements engineer-
ing phase. We believe that the empirical study results contribute to summarize the
risk management impact on the software projects.

Chapter 1
Motivation,

problem domain
& contributions

Chapter 2
Current state
of the art &

practice & their
limitations

Chapter 4
Holistic view of
Software risk
management

Chapter 5
GSRM

Chapter 6
Evaluation

Chapter 7
Conclusions

need improvement

construct

result

support

validate
through

confirm

contrib
ution

support Chapter 3
Subjective
judgment &

BBN

support

Figure 1.3: Over view of the Thesis Structure

1.6 Structure of the Thesis

This first chapter provides the motivation of this research work by investigating
the existing literature of software risk management and problems associated to
the current state of risk management practice. The chapter also includes the main

7

www.manaraa.com

1.6 Structure of the Thesis

contribution of this research. Figure 1.3 shows the relationship among the thesis
chapters. The figure depicts a closed loop of the whole thesis contribution. It starts
with claims as research contributions and finally confirms the claims at the end of
the thesis. Besides this chapter, the thesis is organized into the following chapters:
Chapter 2: presents the literature survey on the state-of-the-art and state-of-the-
practice related to software risk management. The chapter starts with the basic
concepts of software risk management and outlines the existing approaches and
techniques for the software risk management. It then continues with the current
practices and study results on risk management. A short introduction of Goal-
oriented Requirement Engineering (GORE) is given. Finally the chapter summa-
rizes the existing state of the art and outlines the main thesis contribution.
Chapter 3 provides a brief overview of subject expert judgement and Bayesian
Belief Network(BBN). Both of these methods are employed by this research for the
risk estimation and causal relationship model.
Chapter 4: describes the foundational concept of the goal-driven risk manage-
ment model from a holistic perspective. It specifies the early development compo-
nents and associated elements and factors within the component. This component-
element-factor hierarchy allows to identify and categorize the goals and risk fac-
tors during the software development. It also supports the risk management from
a holistic perspective.
Chapter 5: introduces the Goal-driven Software Development Risk Management
Model(GSRM), as the main contribution of this research. The first part of the chap-
ter explains in details the basic concepts of the modeling framework w.r.t. four
different layers (i.e. goal, obstacle, assessment and treatment) of GSRM and its
meta-model. Then it outlines the process model in particular the underlying activ-
ities and tasks involved in GSRM. The chapter is concluded with the main integra-
tion principles of GSRM into requirements engineering.
Chapter 6: evaluates the proposed software development risk management model
through empirical study. The first report is based on the survey focused to iden-
tify the goals and risk factors from the experienced software practitioner within
offshore outsourced software development environment. The case studies imple-
ments the GSRM into active on-going software development projects. Finally the
chapter includes a goal-risk taxonomy for software project.
Chapter 7: presents the conclusions on the overall thesis contribution. The re-
search results are summarized and evaluated. In addition, this section includes a
discussion of the strengths and weaknesses of GSRM as well as some insights into
ongoing and future work.
Appendix A: comprises 200 closed questions to identify the risk factors of a soft-
ware project.
Appendix B: provides the open questions to evaluate the GSRM.
Appendix C: provides a checklist to identify requirements errors.
Figure 1.4 illustrates at a glance our contributions (i.e., left side of Figure 1.4) and
its distribution to the structure of this dissertation (i.e., right side of Figure 1.4).

8

www.manaraa.com

1 Introduction

Chapter 2: Fundamentals and related works

Chatpter 4: Holistic view of the Software development

Chapter 5: Goal-driven software development risk
management model

Chatpter 6: Evaluation

Chapter 7: Conclusion

Appendix: Questionaries and requirements errors
checklist

Risk management
from holistic
perspective

GSRM process
within RE

State of the art

Goal-risk taxonomy

Chatpter 3: Subjective expert judgment and BBN

GSRM

Figure 1.4: Contributions Distribution over the Chapters

9

www.manaraa.com

1.6 Structure of the Thesis

10

www.manaraa.com

CHAPTER 2

Fundamentals and Related Work

Contents
2.1 Basic Concepts . 11
2.2 Risk Management in Software Project 13
2.3 Study results on software risk management 19
2.4 Requirements Engineering and Goal-Orientation 23
2.5 Thesis Contributions . 27

In this chapter, we provide background information and related work which are
relevant for this research. It includes definitions of some basic terms and concepts
of software risk management used by the research and industry communities. The
commonly used software risk management frameworks are presented in details.
The chapter also includes several study results about risk factors and their influ-
ence on software development project. It also includes goals related to project suc-
cess and some findings about the obstacles to implement an effective risk manage-
ment practice. Goal oriented requirements engineering approaches are presented
afterward. Finally we present the summary of the extensive literature survey and
the main contributions of this research work. Figure 2.1 shows the summary of our
extensive investigation on state of the art on software risk management. It includes
risk management frameworks and survey study results on risk factors, risk factor
impact, risk management barriers and factors related to project success.

2.1 Basic Concepts

This section defines the basic concepts of software risk management terminology
used in research and industry. In our everyday use, risk refers to an element or
effect that has some potentially damaging consequences. However, in engineer-
ing work domain, risk associated with a project is a measure of the possible costs
associated with a single or multiple undesirable events and considers both likeli-
hood of event as well as severity of damage done if the identified event occurs and
would occur. On the other hand, in decision theory, risk is treated as an outcome
of either positive or negative consequences, reflects the variation in distribution

11

www.manaraa.com

2.1 Basic Concepts

State of the art
on software risk

management

Risk
management
frameworks

Study results

Boehm’s Spiral model in 1991
SEI’s software risk evaluation in
1994
Karolak’s SERM in 1995
Foo’s SRAM in 2000
Konito’s Riskit in 2001
Roy’s pro-risk management in 2004
Coso’s ERM in 2004
Fan’s BBN based RM in 2004
Prikaldnicki’s integ. RM in GSD in
2006

Risk factors

Risk factors in GSD

Risk factor impact on software
project

Risk management barriers

Project success factors

Figure 2.1: State of the art on Software Risk Management

of possible outcomes [Arr57]. However empirical study results showed that the
perception of risk used in decision theory is not consistent with the term risk de-
fined by the industry managers [MS87]. They are quite insensitive to estimate the
likelihood of risk outcomes.

2.1.1 Software Risk

Risk, in ISO Guide 73:2002, is defined as, ”combination of the probability of an event
and its consequence” [Iso02]. It is constituted upon three basic concepts: event, like-
lihood, and severity. However, the main focus is on undesirable events which pose
a loss in a specific context. Software risk, is defined as, the possibilities of suf-
fering a loss such as budget or schedule over-runs, customer dissatisfaction, poor
quality and passive customer involvement due to an undesirable event and its
consequences during the life cycle of the project.

2.1.2 Risk Event and Likelihood

Risk event is the occurrence of a particular set of negative circumstances or discov-
ery of information that depicts negative circumstances. The event can be certain or
uncertain and can be influenced by a single occurrence or a series of occurrences.

12

www.manaraa.com

2 Fundamentals and Related Work

Likelihood refers to the notion to which an event is probable to occur. Therefore an
event is modeled through likelihood of uncertainty by several mathematical theo-
ries such as probability theory [Ros97], expected utility theory [Hog87], Dempster-
Shaffer theory of evidence [Sha76] and fuzzy set [Zad99]. These theories are de-
veloped for different purposes and represent different classes of uncertainties. For
instance, the axioms of probability theory are [Fis67]:

• Axiom I: Every random event A, there corresponds a certain number P(A),
called the probability of A, which satisfies the inequality 0 ≤ P (A) ≤ 1

• Axiom II: The probability of a certain event equals one, i.e., P(E) = 1

• (Axiom III:) The probability of the possible alternatives of a finite or denu-
merable number of pair wise exclusive events equals to the sum of probabil-
ities of these events.

Hagan et al. [OBD+06] argued that uncertainty could be divided into two classes,
i.e., aleatory uncertainty due to randomness and epistemic uncertainty due to in-
completeness of knowledge. However uncertainty may also appear even though
one has complete knowledge in a situation such as rolling a dice despite of knowing
possible outcomes. This follows aleatory uncertainty by randomly chosen the out-
come by rolling a dice. Smithson [Smi89] also argues that uncertainty could also
emanate from imprecision due to vagueness. These three categories of uncertainty
aleatory, epistemic and imprecision, in particular epistemic and imprecision, fre-
quently exist in software projects and pose for a potential risk. For instance, practi-
tioners’ lack of knowledge about the customer business domain is a very common
and frequent problem in the software projects. This incomplete knowledge causes
an epistemic uncertainty within the development environment. Requirement en-
gineer imprecisely elicits the requirements, as a result customer business needs are
unclear and vague. Product is not precisely deploy in the user environment. There
exists a cause for the occurrence of risk event which is known as risk factor. Risk
factors and events are commonly categorized under a specific classification.

Risk Factor Risk factor is a cause or characteristic that typically influences the
possibility of a risk event occurrence. For instance, ”passive participation of cus-
tomer/user in requirements elicitation” as risk factor causes the risk event ”in-
complete requirements”. Thus risk factor is always related with the risk event and
depend on specific context. However depending on the context, a risk factor can
be also treated as a risk event.

Risk Category Risk category is a grouping or a class of risk. In this disserta-
tion, we focus on software development components to category the risk. These
categories are from project execution, product, process, human and environment.

2.2 Risk Management in Software Project

Risk management in software project describes an integrated engineering ap-
proach with methods, processes and artifacts for identifying, analyzing, control-
ling and continuously monitoring risks in order to reduce the chance of project
failure. It is a practical way to manage risks in the project. Integration of risk man-
agement into software development activities is critical and requires initiating as
early as possible. Early initiation of risk management allows a proactive decision
making situation to control the threats before creating problems to the software

13

www.manaraa.com

2.2 Risk Management in Software Project

development project. Therefore risk management in software project requires un-
dertaking decision making activities. Several works exist in the literature in the di-
rection of risk management frameworks. However the initial contribution for soft-
ware risk management is done by Boehm at late 1980’s [Boe91]. After that, there
are many contributions have produced well-documented framework for risk man-
agement such as SEI’s software risk management approach [CKM+93, ADH+96],
Karolak [Kar95], konito [Kon01], Roy [Roy04] and Prikaldnicki specifically for the
global software development [RPJLNA06].

2.2.1 Principals of Software Risk Management

Among the several contributions in software risk management domain, there is
however a consensus that the risk management commonly comprises of two gen-
eral phases including risks assessment and control. The risk assessment phase
involves the following activities, generally performed in a sequence:
• Risk identification - This activity provides a list of risk items which threat to

the software project. Risk identification describes detailed about the risk of
software project including risk factors, risk category and the risk itself. Vari-
ous approaches can be used to identify risks. These approaches may include
questionnaires, taxonomies, brainstorming, scenario analysis and analyzing
project documents.

• Risk analysis - This activity estimates the probability of the risk event oc-
currence and loss magnitude by the risk event. Therefore risk analysis trans-
forms the raw risk information into a decision enabling knowledge by evalu-
ating a risk exposure level within a chosen scale. Estimation can be quantita-
tive or qualitative. Depending on the context, it is necessary to define which
risks will be evaluated using a qualitative or quantitative scale. The scale
should be used in a consistent way.

• Risk prioritization - Finally the identified and analyzed risks are ranked by
their relative weight. Software projects generally contain a large number of
risk factors. Therefore it is not always possible to mitigate every factor. Ini-
tial consideration can be on the high prioritized risks. Risk exposure and
leverage would be effectively eased to rank the risks.

The risk control phase includes the following activities:

• Risk management plan - This activity supports to address each risk item or
prioritized risk items based on suitable cost-effective potential control strate-
gies. Various treatment alternatives to address risk should be considered to
reduce or eliminate risks. Main focus is to proactively minimize the risks be-
fore it occurs (mitigation planning) or to reactively recover it from the loss
and restore the normal process state (contingency planning). Plan should fo-
cus whether risks are acceptable to the stakeholders, if not, then what are the
possible control actions to reduce the risks.

• Implementation of risk control actions- The selected potential control action
need to be implemented to control the risk at an acceptable level.

• Monitoring - The activity tracks effectiveness of the implemented control
actions as well as project progress toward resolving the risks. All risks in
particular high priority risks should be monitored at a certain interval so
that, if required, corrective actions should be undertaken for a specific risk.
Risk monitoring also seeks out new risk and their sources throughout the
development life cycle.

• Risk resource repository - The activity builds a repository based on the arti-
facts including risk factors, risk events, rank of risk, control action and status

14

www.manaraa.com

2 Fundamentals and Related Work

produced from the risk management steps under a specific project context.
This facilitates to reuse risk based knowledge for software projects.

2.2.2 Risk Management Frameworks

The theoretical foundation of putting risk management into a single framework
is initially contributed by Boehm [Boe91]. Boehm’s risk-driven Spiral model was
the first life cycle model to integrate risk management throughout software devel-
opment life cycle in an iterative manner. Later on, Boehm extended the original
Spiral model using the theory W (Win-Win) model [BEK+98] to satisfy the objec-
tives and concerns of the stakeholders. The model also supports risk identification,
resolution and continuous monitoring of risks. However the approach requires in-
tensive active involvement of project customer/user, which is difficult to attain in
real on-going project situation.

The Software Engineering Institute (SEI) provides a comprehensive framework to
support a continuous software risk management by software risk evaluation [SJ94].
The approach concerns identification, analysis, communication and mitigation
strategies for software risk management. It depends on risk taxonomy and con-
sists of constructs used for organizing risk information. Therefore risk taxon-
omy and associated questionnaire [CKM+93] is the central element of SEI’s ap-
proach. The taxonomy covers 194 questions of several areas including require-
ments, designing, coding, testing, integration, and engineering specialties under
product engineering, development process, development system, management
process, management methods, work environment under development environ-
ment and resources, contracts and program interfaces under program constraints.
The SEI Continuous Risk Management Guidebook [ADH+96] provides practical
techniques for providing processes, methods and tools for continuously managing
risks during all phases of software development life cycle. However, the guide-
book does not include theoretical background information about risk management
as well as key limitations and biases associated with the techniques it presents.
Team risk management concerns the development of methods, processes and tools
for building relationships among project stakeholders during software develop-
ment. These three different groups support each other for the successfully comple-
tion of risk management.

Karolak proposed Software Engineering Risk Model (SERIM) [Kar95] framework
by taking Just-In-Time (JIT) software approach. SERIM attempts to minimize the
amount of risks involved, while optimizing the contingency strategies for prob-
lematic situations. The approach considers three main risk elements, i.e., tech-
nology, cost and schedule from technological and business perspectives. These
elements are interconnected with 81 risk factors. The risk factors are influenced
from organization, estimation, monitoring, development methodology, tools, risk
culture and usability. Every risk factor is associated with a specific risk metric
and question. These questionnaires, such as a checklist to identify specific risk are
answered by project representatives and converted to numerical values through
metrics. The network of answers and their weights are used to calculate risk fac-
tor values, using probability tree. Karolak’s model gives quantified estimates of
project’s risks along the risk factor categories. However, no empirical validation
report is available on the SERIM approach as well as it does not show when and
where the risk management initiates during the development and who will be in-
volved into the process.

Kontio proposed the Riskit methodology [Kon01], which provides a complete con-
ceptual framework for risk management using a goal/expectation approach from

15

www.manaraa.com

2.2 Risk Management in Software Project

the stakeholders and risks which threaten the goals. The approach provides pre-
cise and unambiguous definitions of risks and aims at modeling and documenting
risks qualitatively. At the heart of the approach, is the visual formalism of the
risk by analyzing risk factors, risk events, risk reactions, risk effect sets and utility
loss that would occur due to a risk events. Risks are ranked in terms of probabil-
ity and utility loss by a specific Riskit Pareto ranking technique. Riskit also helps
for systematically managing the project starting from identification and analysis
of risks to the monitoring and control of them. The approach is finally validated
through empirical evaluation by several studies including exploratory case study
at NASA, characterizing case study at Hughes, Nokia and DaimlerChrysler study
and method introduction study with IESE and Tenvois [JKL98, FHK+01]. The re-
sults showed that Riskit method is practical, adds value to the project and its key
concepts are understood and usable in practice. For instance in Tenvois case study,
explicit process of the Riskit method is simple and understandable and cost of
Riskit is 5% of the overall project management effort. Therefore the impact of risk
management on the project was low and acceptable. However there are some lim-
itations of the Riskit. There are no clear sources specified from where the goals are
originated and how the identified goals are modeled. Risks are analyzed and pri-
oritized by deriving scenarios which is a non-trivial task when a scenario depends
upon more than one probabilistic element. Furthermore, developing a scenario is
a time consuming task in hectic real software development project. There may be
risk factors that are not necessarily directly obstructed a particular goal, expecta-
tion and constraint but that pose other problems within the development environ-
ment. This may also reduce the project success rate such as domain knowledge of
the practitioners within the developing project. And it is always hard to formulate
a scenario from this factors and attempt to perform a comparison among them. The
approach prioritises risk scenarios rather than individual risks. However Riskit
certainly contributes by introducing the goal concept for risk management.

Foo et al. [FM00] make use of comprehensive questionnaire to construct Software
Risk Assessment Model(SRAM). A set of questions are chosen for nine critical risk
elements, i.e., complexity, staff, targeted reliability, requirements, method of es-
timation, monitoring, process, usability and tools. Each question contains three
possible answers and each element has different degree of impacts on different
types of software projects. Therefore when the elements are combined, different
weights are assigned to derive the overall risk value. However, determining risk
element probability is a difficult task, which depends on project specific context
and involved practitioner’s belief. There is no set rule to use a common weight
value. Further detailed implementation of the model is missing.

Roy’s pro risk management framework [Roy04] is an extension of the AS/NZS [AS499].
The main attention of the framework is on business component in which the
project is created and operational domain where the project is actually carried out.
Business domain considers economic environment in which the project is being
undertaken and organization knowledge and experience for the project. Oper-
ational domain considers risk assessment and implementation of control action
within by following organizational views and policies. A risk tree model is con-
structed through risk factors and these risk factors are categorized into cluster. The
model is calibrated mainly by cost and schedule perspectives but if required qual-
ity and reputation perspectives are also considered.

Enterprise risk management (ERM) framework proposed by [COS04] affect in ev-
ery layer of the enterprise. The framework is applied in strategy setting and across
the enterprise and is designed to identify potential events that may affect the en-
terprise. ERM initially focuses on achievement of objectives established by a par-
ticular entity and provides a basis for defining enterprise risk management effec-

16

www.manaraa.com

2 Fundamentals and Related Work

tiveness. The objectives are four categories which allow focusing on separated as-
pect of enterprise risk management. They are: Strategic - high-level goals, aligned
with and supporting its mission, Operations - effective and efficient use of its re-
sources, Reporting - reliability of reporting, and Compliance - compliance with ap-
plicable laws and regulations. ERM is composed of eight interrelated components,
i.e., internal environment, objective setting, event identification, risk assessment,
risk response, control activities, information and communication, and monitoring.
Therefore ERM covers all steps for risk management however precise definition of
each step is missing in particular how individual step is performed. More over it
is considered as a separate enterprise module.
Prikaldnicki et al. in [RPJLNA06] proposed an integrated risk management pro-
cess across three different organizational levels i.e., strategic, tactical and opera-
tional, in particular for the global software development (GSD) projects. It follows
a reference model which focuses on two different dimensions, i.e., organizational
and project and consists of four different phases including new project, project al-
location, project development, evaluation and feedback [PNJE06]. Each phase con-
tains individual process. Once the project is identified, risk assessment effectively
assists offshore development decision from both the strategic and tactical level.
Risk assessment continues further at the operational level and this integrates the
result from the previous levels. This facilitates to communicate risk and decision,
initiating from strategic and tactical levels, continuing to operational level. In the
case study, several risk factors in particular from legal compliance, privacy, devel-
opment infrastructure, security, requirements clarity, technology, project complex-
ity and time frame are considered.

2.2.3 Risk Management Standards

IEEE std 16085-2006 [IEE06], system and software engineering- life cycle processes
- risk management, specifies detailed guideline to perform risk management dur-
ing system life cycle. The standard includes six main activities: plan and im-
plement risk management, manage the project risk profile, perform risk analysis,
monitoring and treatment and evaluate the risk management process to systemat-
ically address risk throughout the life cycle of the product. The activity should be
performed at the beginning of the project and repeated when information needs to
be changed. Furthermore it also outlines several artifacts including risk manage-
ment plan, risk action request, risk treatment plan to manage well-documented
risk management activities. Thus the standard complements the activities sup-
ported by the other literature in a systematic way.
There also exist other standards which address risks from different perspectives.
ISO 27001:2005, Information technology - Security techniques - Information secu-
rity management systems(ISMS) -Requirements [ISOc] emphasizes the importance
of implementing and operating controls to manage an organization’s information
security risks in the context of the organization’s overall business risks. The stan-
dard guides to identify, analyze, evaluate and treat risks to establish an informa-
tion security management system. It also emphasizes monitoring and reviewing
the performance and effectiveness of the control actions. The main focus is to pro-
tect assets that have a business impact upon organization and successfully security
failures which can negatively impact on the confidentiality, integrity or availabil-
ity of the assets. ISMS mainly adopts Plan-Do-Check-Control model for managing
security risk.
However, available standards are too general and any detailed guidelines about
how to perform the activities in risk management are not available. Therefore,
one has to formulate his/her own process for performing risk management by

17

www.manaraa.com

2.2 Risk Management in Software Project

following the standard. We can validate the standard by following it in an ongoing
software project.

2.2.4 Current Practice of Risk Assessment

Risk identification in a software project relies upon two main techniques: check-
lists and brainstorming sessions with project documents. A brief overview of the
techniques is given below

2.2.4.1 Checklists

Checklist usually comprises a set of questionnaires or a risk list based on the expe-
rience from past projects. Questionnaires generally determine the current state of
the project through open or closed question and attempt to identify factors which
pose risk in the development. The risk list composes of typical factors which pose
potential risks in the software project. Both questionnaires and risk lists consider
several areas of development such as project cost and schedule, practitioners, cus-
tomer/user. For instance, SEI risk taxonomy by Carr et al. [CKM+93] was orga-
nized into three major classes including product engineering, development envi-
ronment and program constraints. These classes are further divided into elements
and each element is characterized by its attributes. The complete taxonomy is a
hierarchical structure of super and sub-types with 194 mostly open question de-
scribed from the software development risk perspective. But the answers may not
be concrete which make hard to quantify the risks value. More over, it is not clear
when during the development the question response would be collected, who will
be responsible to answer the questions and which artifacts can be reviewed for
this purpose. Another risk identification questionnaire has been compiled by Mc-
Connell [McC96] covering mostly the coding issues, followed by a list of typical
schedule risk factors.
The main benefit of the checklist approach for risk identification is that it provides
a quick, easy to use and controlled way to identify and assess the risk exposure
against the major factors. However there are several problems with this simple
approach. The published risk lists are generic and may be not relevant to a par-
ticular project. Some are long checklists with unlimited scope through life cycle
which makes it difficult to follow it in a hectic running software project. As stated,
the perception of risk varies over time, over project life cycle and different cultures,
between stakeholders. Therefore checklists may bias to particular state or may be
limited in scope.

2.2.4.2 Brainstorming Session

Brainstorming session is a collaborative technique which depends on high human
involvement for risk identification. It is a face-to-face meeting among project team
members including practitioners, management representatives and customer/user
representatives to share their experience to identify reasons of the risk of the run-
ning project. Konito studied the effectiveness of group work under brainstorming
sessions for risk identification. The most beneficial feature of a brainstorming ses-
sion is the interaction among several project stakeholders. Rather than that, there
are several other advantages of using brainstorming session such as short duration,
prompt effects, keeping project participants concerned about risk and improving
interaction among project members. However this technique also has some limita-
tions including low scope control, obtaining project stakeholder in a real situation

18

www.manaraa.com

2 Fundamentals and Related Work

is not always possible, heterogeneous output and the fact which result always de-
pends upon the expertise of the participants.
Besides checklists and brainstorming sessions, there are some other techniques
such as decision-driver analysis, scenario analysis and prototyping to identify the
risk factors. However every technique in particular checklists and brainstorming
sessions have distinguished features as well as limitations. Therefore combination
of the techniques is more suitable for the risk identification.

2.2.4.3 Risk Analysis

Risk analysis determines the effects of the potential risks, categorizes as well as
prioritizes the raw identified risks. It is the most challenging part of software risk
management practice due to the difficulties of estimating the risk event likelihood
and its impact. Both qualitative and quantitative based assessment is applicable to
estimate the risk. Qualitative approach is simple and requires immediate actions
to the prioritized areas for the improvement. But the approach does not provide
specific quantifiable measurement of risk elements therefore supports limited risk
estimation accuracy. On the other hand, quantitative approach provides potential
support for decision making by quantified estimates of impact, frequency, effec-
tiveness, and cost. However it is difficult to perform a comparison to a qualitative
one but sometimes produces unclear results which require extra effort to interpret
them in qualitative manner. Software project risk is most often estimated qualita-
tively for the sake of simplicity. The scale values of risk are typically ranked with
three to five levels: catastrophic, high, moderate, medium, and low and probability
can also be scaled as rare, unlikely, moderate, likely and almost certain.
However risk estimation, in particular obtaining specific risk probability value, is
a difficult task. There are several sources to estimate the probability such as use of
historical data, theoretical analysis and subjective value. Historical data is seldom
available in software engineering and rarely provide trustworthy base to estimate
the probability. This is because due to the course of time, project goal, situation,
business process and technology have continuously changed, risks that are likely
to occur in past do not guarantee to have similar probability in present. In software
engineering, there is a lack of theoretical analysis in literature and practice to sup-
port risk analysis. Therefore, subjective judgment is commonly used to estimate
the risk event likelihood and associated consequence. However sometimes, in an
on-going project, there are often too many potential risk factors to analysis and
manage. Therefore controlling individual risk factors would be unproductive due
to causal ambiguity. Chapter 3 provides a brief overview of subjective probability
in software risk management.

2.3 Study results on software risk management

There exists several survey studies on identifying risk factors and assessing its im-
pact on the software development project. The participants of these surveys are
mostly experienced practitioners who expresses their view about the risk factors
and their impact in the software development. Some studies also focus on the chal-
lenges for implementation of risk management in software development projects.

2.3.1 Risk Factors

The well known ”top-ten” list of risk factor is provided by Boehm [Boe91]. Af-
ter that several lists of risk factors have been published [BRT93, KCLS98, SLKC01,

19

www.manaraa.com

2.3 Study results on software risk management

WKR04, AMN07]. Among these contributions, Barki and Schmidt composed the
most comprehensive ones. Barki et al. [BRT93] compiled a list of 35 risk variables
which were represented in the form of a questionnaire consisting of 144 items
based on the review of the existing Information System (IS) literature. The results
of their survey based on the questionnaire showed five influential factors: techno-
logical newness, application size, lack of expertise, application complexity and or-
ganizational environment for the most interpretable solution of software risk. Ini-
tially nine factors are considered but judged as uninterpretable and proposed these
five factors as an interpretable solution. Based on the result 23 uncertainty vari-
ables were retained related to uncertainty and measured by 83 items. However the
measurement scales were complex and large number of single item measure puts
the whole measurement process into an unmanageable state. Moynihan [Moy97]
focuses on the project constructs, i.e., personal constructs and application, needed
to be considered by the project manager. The study observed that risk variables
identified by Barki et al. [BRT93] lack client’s apparent knowledge. There are also
many areas addressed by the SEI taxonomy [CKM+93] i.e., product technical as-
pect, management methods and process which are not directly reflected by the
personal construct. A project manager should focus on all issues related to per-
sonal constructs since early stage of project. Schmidt et al. [SLKC01] published a
comprehensive list of risk factors by conducting Delphi survey study to the experi-
enced project practitioners through three different panels located in three different
countries. The study categorized the risk factors into several different areas such as
corporate environment, sponsorship, relationship management, project manage-
ment, scope, requirements, funding, scheduling, development process, staffing,
technology, and external dependencies. Arshad et al. [AMN07] published a list of
important risk factors and ranked them by following the survey response.

2.3.2 Risk Factors in Global Software Development

Some research specifically considered to identify the risk factors in Global Software
Development(GSD) context. Iacovou et al. [IN08] summarized a risk profile by the
top ten risk factors for offshore-outsourced development projects. The risk factors
are ranked as very important, important and less important by focusing on three
main areas: communication, client’s internal management and vendor capabilities.
Nakatsu et al. [NI09] further investigated and compared the risk factors between
offshore and domestic outsourcing. The result showed that many risk factors re-
lated to project management commonly appeared on the top of both domestic and
offshore risk lists such as lack of top management commitment, inadequate user
involvement and failure to manage end user expectation. Some are unique for the
offshore context such as lack of communication, poor change controls, lack of busi-
ness know-how and failure to consider all costs. Aspray et al. [AMV06] provided
an ACM task force report that considers risk from both technical and nontechni-
cal issues. Tsuji et al. [TSY+07] proposed an questionnaires assessment scheme
considering software, vendor, and project properties to quantify risk of offshore
software outsourcing. Their survey result showed that the degree of importance
among these properties and concluded that vendor properties such as commu-
nication and project management ability mainly affect the result of development
whereas software properties such as requirement volatility did not affect the re-
sult. Some studies also outlined difficulties due to development process, project
management and project complexity for the GSD projects [Car99].

20

www.manaraa.com

2 Fundamentals and Related Work

2.3.3 Risk factors impact on software project

Some works have been undertaken to investigate the potential effects of risk factors
on software development projects. Wallace et al. [WKR04] focused on risk factors
from six different dimensions and their affect on a project. The study considered
low, medium and high risk projects and observed the impact of risk dimensions
on the projects. The six risk dimensions are: user, team, requirements, planning
and control, complexity and organizational environment. The result showed that
risks associated with requirements, planning and control and organizational en-
vironment are more obvious for the high risk projects. Project scope affects all
dimensions of risk and project complexity is more obvious for the low risk project.
Keil et al. [KCLS98] identify the risk factors and their relative importance in soft-
ware project. The result showed that very important risks are most often not direct
controlled by the project manager. Risk factors are organized into four quadrants
based on the perceived importance of risk and perceived level of control by the
project manager likely to have. Quadrant 1, customer mandate focuses on risk fac-
tors related to customer and user. Quadrant 2, scope and requirements focuses on risk
factors related to success criteria, requirements, project scope, and gaols. Quad-
rant 3, execution focuses on risk factors related to staffing, project constraints, roles
and development methods. And quadrant 4, environment focuses on risk factors
related to internal and external environment. Wallace et al. [WK04] further inves-
tigated the relative importance of these quadrants and outlined that execution risk
including project team, complexity, planning and control, management is twice as
important as scope and requirement risk for the process outcome. And customer
mandate, scope and requirements, and execution risk have significant affect on
product outcome.

Ropponen et al. [RL00] empirically identified six components of software devel-
opment risk i.e., scheduling and timing, system functionality, subcontracting, re-
quirement management, resource usage and performance and personnel manage-
ment. Several influential factors are considered for the individual components.
The result showed that awareness of the risk management impact and systematic
risk management practice has an effect on schedule, requirements and personal
management risk. Software risk management is affected by several environmen-
tal factors such as target platform selection, development process, leveraging on
experience, experienced and well educated practitioners, and proper project scor-
ing. The study also recommended, that organization must tailor risk management
efforts to the development environment.

Jiang et al. [JK00] examined the risk impact on different system development as-
pects in particular the study looked at the 12 most common software development
risks proposed by Barki [BRT93]. Empirical evidence on the relationship between
risk and project effectiveness is considered here. Two common risks observed are:
lack of expertise and clear role definition. Practitioner expertise is further refined
with ability to work with uncertain objectives, top management and as a team,
and ability to carry out tasks effectively. However project management guidelines
allow the skill matching and team skills should be conducted throughout the de-
velopment. On the other hand, member selection for the project must comprise
clear definition of specific tasks, expected outcomes, rewards, timing, responsibil-
ities, and reporting relationship. The result concluded that, controlling these two
risk dimensions can effectively contribute to the project success.

21

www.manaraa.com

2.3 Study results on software risk management

2.3.4 Software Risk Management Barriers

Ropponen et al. showed that [Rop99] 75 % of the project managers did not fol-
low any detailed risk management practice and did not have adequate knowledge
about software risk management. However for a successful project, it is difficult
to prove that any part of the resulting product was influenced by the software
risk management [Ban08]. Kwak et al [KS04] observed that project managers and
practitioners perceive risk management activities as extra work and expenses. It
may inhibit creativity work during the development. Nyfjord et al. in a survey
study outline [NKM08] several problems to integrate risk management into the
development. They are: resource problem (i.e., expensive training cost, lack of re-
source and time), organizational problems (i.e., different roles, lack of competence,
overloaded work), scope problem, and process problem (i.e., lack of coordination,
integration and planning). Another recent survey study of experienced project
managers [OG09] on their perception of software risk management outlines tan-
gible development cost, lack of resources and efforts from organization or process
change due to risk mitigation are top the three identified barriers of software risk
management. The result also emphasizes on other barriers such as too much risk
to control, reward for problem solving not for risk mitigation, overconfidence on
individual measurements which pose challenges for the implementation of risk
management in the development. Risk management is the most problematic task
of software risk management. Pfleeger [Pfl00] emphasizes on false precision (i.e.,
lack of risk probability distribution data and obscure value), questionable science
(i.e., relevancy and quality of the data being studied, ignorance or giving less cre-
dence to qualitative data), and confusion of facts with value (i.e., risk quantification
without knowing the consequence).
Despite of these barriers, risk management is one of the most effective tools which
effectively contributes to increase the likelihood of project success. Therefore in-
tegration of risk management in software project effectively contribute to prevent
the risks and contributes for quality product with estimated cost and expected
quality. Literature [BP01, FCD02] emphasizes the importance of educating risk
management process and techniques to the practitioners involved in software de-
velopment.

2.3.5 Study Result on Software Project Success factors

To demonstrate a software development risk, it is necessary to understand the is-
sues related to the project success. Project success factors have great importance
to software development project effectiveness and are obstructed by the software
development risk. Therefore success specifies what should be done for the project.
Nevertheless it is highly dependent on the context and difficult to describe in ab-
solute terms. Study results published factors related to the project success.
Procaccino et al. [PVOD02] identified seven major factors which contribute to the
success or failure of a software system. They are: management, customer and
users, requirements, estimation and scheduling, the project manager, the software
development process and development personnel. This study investigates some of
the most influential success factors early in the development process from the per-
spective of developer. Developers perceived that presence of a committed spon-
sor and customer/user confidence on the project manager and developers are the
influential factors to the project success. However this perception differs signif-
icantly compared to the management perception about success because manage-
ment takes politically oriented view to manage the customer and user. Change of
project scope during development does not change the perception of project suc-

22

www.manaraa.com

2 Fundamentals and Related Work

cess. The result also shows that neither project manager’s full authority to manage
the project nor customer/user involvement in schedule estimation highly influ-
ence the project success. Procaccino et al. [PV09] in another qualitative assessment
report the end user expectations towards a successful project from the develop-
ers perspective. The most frequently mentioned responses related to process are
: communication between user and team in particular importance of keeping the
customer informed, user involvement in the development process specifically user
feelings as a part of decision making and defining specific and realistic require-
ments. The most frequently mentioned responses related to final system/outcome
are: requirements/ functionality/ performance, ease of use and learning and sys-
tem completion which delivers functional needs and within budget and time.

Linberg noted that software project success is narrowly defined due to the deep
dependency on cost. Jiang et al. [JKD02] used metrics to measure system success
from providers and users perspectives. The multidimensional measures on system
success allows to improve the link between IS professional and those who use the
results of their efforts. In literature, user satisfaction is considered to be the most
widely used measure for the system success. But perception of user satisfaction
on service delivery and performance are significantly differed between users and
practitioner. For instance If users have higher expectations than IS professionals,
a problem may develop in the reception of the final product. On the contrary, if
professionals have higher expectations, then there may have ineffective resource
utilization in particular too much effort may spend for the less important issues.
Knowledge gap between the groups is another critical problem [JK00]. Users com-
monly evaluate final product based on the specifications. But there exist external
issues such as appropriate level of technology for the product or adequate user
knowledge to handle the production in particular when the product is innovative
or unique and this knowledge gap of technology is difficult to control and highly
affect to the usefulness of the product. User education may be the best control
for this gap. Wohlin et al [WvMHR00] use subjective measurement factor based
on project characteristics and success indicators to evaluate project success. There
exists positive correlation between the project variable, i.e., problem complexity,
requirements stability, staff turnover, time pressure, information flow, top manage-
ment priority and project management with the success variables. Results showed
that requirements stability and priority secure the two highest correlations. Khan
et al. [KNA09] by a systematic literature survey noted that cost saving even though
the highest prioritized success factor should not be considered as the prime one for
the offshore software development. Vendors should also focus on competence of
human resources, appropriate infrastructure, and quality of product to be very
important success factor in offshore context. Prikaldnicki focused on managing
human factors as critical success factors for distributed development team [Pri09].
The approach used the PDI model to quantify the perceived distance which is not
necessary physical distance but is a subject of feelings among the distributed de-
velopment teams.

2.4 Requirements Engineering and Goal-Orientation

Goal-Oriented Requirements Engineering (GORE) refers to the use of goals has
long been recognized by the RE community in recent years for elicitation, evalua-
tion, negotiation, elaboration, structuring, analysis, and documentation of require-
ments. GORE addresses the problems associated with business goals, plans and
processes as well as systems to be developed or to be evolved in order to achieve
organizational objectives [LK95]. Goal model generally shows the system’s func-

23

www.manaraa.com

2.4 Requirements Engineering and Goal-Orientation

tional and non-functional goals contribute to each other through refinement links
down to software requirements and environmental assumption. Requirements are
the lower level goals under the responsibility of a single agent of the system to
be [vL09]. Goals play a crucial role and identify all phases in particular during
requirement elicitation, evaluation and consolidation in the RE process. They pro-
vide the rationale for requirements and a foundation for showing the alignment of
the system-to-be with the organization’s strategy objective. Several methodologies
in particular i*/Tropos and KAOS are commonly used for GORE in RE process.
Here we present a short overview of i*/Tropos and a detailed of KAOS since it is
the main foundation for this work.

2.4.1 i*/Tropos

i*/Tropos is a requirement engineering methodology, which provides a description
of work organization in terms of dependency relationships among actors [Yu97,
YLL01, BPG+04]. The approach pays a great deal of attention to the early require-
ments, emphasizing the need to understand not only what organizational goals
are, but also how and why the intended system would meet its organizational
goals. In particular, Tropos mainly adopts the i* modeling framework and focuses
to build a system model which is incrementally refined and extended from a con-
ceptual level to executable artifacts, by means of a sequence of transformational
steps. Several concepts such as , actor, goal, task, resource and social relationships
are used to capture stakeholders’ intentions in an organizational setting. An actor,
within the multi agent system, is an active entity that carries out actions by using
some resource to achieve intentionality and strategic goals within the multi-agent
system or within its organizational setting. These goals can be hard or soft. A hard
goal represents a condition or actor’s strategic interest in the world that an actor
would like to achieve. A soft-goal is used to capture non-functional requirements
of the system, and unlike a (hard) goal, it does not have clear criteria for deciding
whether it is satisfied or not and therefore it is subject to interpretation. A resource
represents a physical or informational entity which is generally required by an
actor to perform some action. The main concern when dealing with resources is
whether the resource is available and who is responsible for its delivery. Once the
concepts are defined then an actor model can be constructed by establishing a de-
pendency link among the actors, performed tasks, required resource, and related
goals. This goal-oriented approach explicitly links business needs and objectives
to the system functional or non-functional components.
Several works consider an extensions of Tropos methodology in particular for se-
curity as well as other non-functional domains. Among them, Secure Tropos pre-
sented a successful extension of the Tropos methodology. Therefore agent ori-
ented software engineering paradigm presents a feasible approach for the inte-
gration of security into software engineering. Security requirements are mainly
obtained by analyzing the attitude of the organization towards security and af-
ter studying the security policy of the organization. Liu et al. [LYM03] propose a
methodological framework for security requirements analysis founded on i* and
the Non-Functional Requirement NFR) framework. In particular, their analysis
explores alternative designs and evaluates them on the basis of threats, vulner-
abilities and countermeasures. Secure Tropos [MG07, IMJ10]introduces security
related concepts (e.g. security constraint, secure dependency, secure goal) to the
Tropos methodology, to enable developers to consider security issues throughout
the development life cycle. A security constraint is defined in Secure Tropos as a
restriction related to security issues, such as privacy or integrity, which influences
the analysis and design of the software system under development by restricting

24

www.manaraa.com

2 Fundamentals and Related Work

some alternative design solutions, by conflicting with some of the requirements of
the system, or by refining some of the system’s objectives. These constraints rep-
resent in Secure Tropos the initial high level security requirements which elicited
from a number of sources including the stakeholders and users of the system as
well as domain and security experts. In actor model, Secure Tropos introduces
secure dependencies where an actor must be fulfilled the constraints to attain the
goals. Secure Tropos uses the term secure entity to describe any goals, tasks and
resources related to the security of the system.

2.4.2 KAOS

KAOS (Keep All Objective Satisfied) is a goal-oriented requirements engineering
methodology, which aims to model not only what and how aspect of requirements
but also why, who, and when [DvLF93, vL09]. A goal in KAOS, is a prescriptive or
descriptive statement of intent that the system should satisfy through the coopera-
tion of its agents. Goals can be behavioral which specify maximal set of admissible
system behaviors either required to achieve or maintain/avoid depending on the
nature of the goal. E.g., car behaviors when driver drives the car. Goals can also
be soft which prescribe choices among alternative system behaviors, may require
to improve, increase, reduce, maximize, and minimize. E.g., user interaction, cost,
development, and some performance goals tend to be soft goal. A goal can also
be categorized as a functional and non-functional goal. A functional goal spec-
ifies the intent basis of the system service, whereas a non-functional goal states
the quality or constraints on a service provision or development. Therefore func-
tional goals can be satisfaction, information and stimulus-response goals. And
non-functional goals can be quality of service in particular safety, security, reliabil-
ity, performance, interface, and accuracy, compliance, architectural, development
goals. However goal partitioning through behavioral or soft is completely differ-
ent from functional and non-functional ones. Because the former one deals with
goal satisfaction in clear cut sense and the later one on classification criterion. Soft
goal is more fuzzy that deals mainly with intended system services or quality con-
straints of such services. In KAOS goal model, each of these goals is represented
graphically with possible prefix by its type, is annotated by a number of features to
characterize the goal individually. The core of the goal model consists of a refine-
ment graph of higher-level goals to lower-level goals and conversely lower-level
goals contributed to higher level ones as well as represents the potential conflicts
among the goals.
The initial model has been extended, by defining obstacles and constraints that can
be seen as boundaries in requirements analysis [vLL00]. A goal is obstructed by
an obstacle if the satisfaction of the obstacle prevents the goal from being satisfied.
Goal obstruction yields a sufficient condition for a goal not being satisfied and the
obstacle must be compatible with known valid properties of the domain related to
the goal. An obstacle can be of several types, i.e., hazard obstacles which obstruct
the safety goals, threat obstacles which obstruct the security goals, dissatisfaction
obstacles which obstruct the satisfaction of agent requests, misinformation obsta-
cles which obstructs the goals of making agents informed, inaccuracy obstacles
which obstruct the consistency between state of variables controlled by software
agents, and usability obstacles which obstruct usability goals. Obstacles are also
modeled and refined from a higher to lower level based on its category to specify
which single or several goals a specific obstacle obstructs. In KAOS, both goals and
obstacles can be refined through AND-refinements or OR-refinements. However,
if an obstacle O directly obstructs a goal G, then OR-refinement sub-obstacle of the
parent O also directly obstruct the goal G due to the transitivity relation. Addi-

25

www.manaraa.com

2.4 Requirements Engineering and Goal-Orientation

tionally, there is a dual structure between goal’s AND-refinement and obstacle’s
OR-refinement. For instance consider a goal G is AND-refined in two sub-goals
G1 and G2. An obstacle O that directly obstructs the goal G can be OR-refined into
O1 and O2 that also directly obstruct the sub-goals G1 and G2. This is the direct
consequence of Demorgan’s law of propositional logic not(G1 and G2) is logically
equivalent to not G1 and not G2

This representation allows assessing the severity of the obstacle when one single
obstacle obstructs single or more than one goal. Therefore, obstacle analysis sup-
ports for a more robust goal model by following risk management process through
obstacle identification, assessment and resolution. Higher level goals yield higher
level obstacles that need to be refined significantly so that likelihood of an obstacle
can be assessed easily and accurately. This refinement should support the dupli-
cation of goal refinement by goal AND-refinement and obstacle OR-refinement.
Obstacle identification process should be fairly systematic based on the goal cate-
gory and priority and may require domain experts to obtain the task. All refined
obstacles should verify its consistency with the relevant domain and estimate the
likelihood of the refined sub-obstacle as well as the related parent obstacle and
their severity. Finally, the identified obstacles, if likely and critical, must be re-
solved through suitable control actions, in general at RE time.

2.4.3 Summary of the Current Approaches

This section summarizes our investigation on the state of the art in practice of
software risk management by following the existing risk management frameworks
and study results:

• We noticed that most of the existing frameworks follow more or less the same
process to asses and manage risks. Practitioners and researchers emphasize
on the initiation of risk management activities as early as possible. However
details to integrate risk management activities into software project is still
missing. Some works consider risk management during requirements engi-
neering [Bor05, BFH08] and software design [VM04]. But in case of consider-
ing risk management activities into software design, counter measures may
introduce revision of the whole design or alteration of the elicited system
requirements and related artifacts. These may lead to unanticipated prob-
lems during the development and jeopardy to the project success. There-
fore considering risk management since the early phase in particular within
requirements engineering phase can avoid such problems and contributes
to mitigate these risks. On the other hand, approaches which consider risk
management into requirements engineering mainly focus on the elicited re-
quirements and late requirements analysis. This implies that risks are an-
alyzed only from the technical perspective. Recent work from Asnar et
at. [AG06, AG07] explicitly consider risk management activities into early
requirements engineering by considering stakeholder needs within the orga-
nizational setting. They extend i* / Tropos and SI and include a goal-risk
model. However, actual integration points are missing regarding the inte-
gration of risk management into requirements engineering. Hence there is
a great need for process integration in particular criteria such as activities,
resources and roles to understand the integration.

• Software risk management generally focuses on limited goals related to
schedule, cost and quality. Nevertheless, certain goals such as coordina-
tion projects work within different cultures and locations, supporting criti-
cal business processes, compliance with the demanded regulations, product

26

www.manaraa.com

2 Fundamentals and Related Work

maintenance, safety, safety and privacy have gained importance recently. In-
deed, software projects should not be restricted with limited goals. Addi-
tionally, supporting limited goal may ignore the important risk or may rank
the risk lower priority.

• There are many study results on risk factors as well as different software
risks checklists available in the literature. But relatively little effort has gone
into assessing the impact of these risk factors on the software development
projects. In particular little work has been undertaken to understand the im-
pact of overall risk management framework into software development. Fur-
thermore selecting and using a specific checklist is a difficult task as projects
also suffer from project specific risks. Checklist only supports to identify
generic risk. To identify the project specific risk factors, we need to under-
stand the project domain context, goals, local environment and other related
factors. We also need to study the results of risk management impact on the
software development project. It gives empirical data points about the ben-
efits of the risk management and motivates the practitioners for an effective
use of software risk management.

2.5 Thesis Contributions

This thesis work contributes to overcome the existing limitations for an effective
risk management practice and its integration in software projects. For our work,
we have decided to extend the KAOS methodology to integrate the risk manage-
ment activities. This research introduces goal-driven approach for a comprehen-
sive risk management framework. The thesis mainly contributes:

1. A goal-driven modeling framework to support more effective, systematic
and straight-forward methods and techniques for software risk management.
Risk management cannot solely depends on technical aspects. It needs to
focus on the organizational, practitioners, user and business perspective as
well as user organizational environment where the software would oper-
ate and maintenance. The proposed model considers a holistic view that
spans toward both technical and non-technical dimensions of the develop-
ment components. The modeling framework is organized into four different
layers: goal, obstacle, assessment and treatment. At the top, goal layer, it
identifies and elaborates the goals of the project stakeholders and other de-
velopment components such as human, organization, product and process.
Obstacle layer considers the risk factors which obstruct the goals and elab-
orate through assessment layer. Finally treatment layer selects the potential
control actions to fulfill the goals. Goal-driven approach systematically inte-
grates project generic and specific risks to assess and manage throughout the
product life cycle.

2. The model explicitly integrates into early requirements engineering phase.
We consider integration points from the process and artifact perspective of
both requirements engineering and risk management to understand the nec-
essary criteria for the integration. This integration eases to consider issues
related to a practitioner, customer/user, project context, development envi-
ronment even before elicitating the system requirements.

3. A systematic risk management methodology with sequence of activities to
identify goals and obstacles and to model them to support risk assessment
and treatment. The methodology adapts the foundations of risk management
practice from existing literature in particular Boehm’s Spiral model, Karo-
lak’s SERIM and the Systems and software engineering - life cycle processes

27

www.manaraa.com

2.5 Thesis Contributions

- risk management standard ISO/IEC 16085: 2006 as well as basic concepts of
KAOS’s goals and obstacles. The methodology supports modeling of goals
and obstacles i.e., goal-risk model and causal relationship from the risk fac-
tors to the risk events and consequences. The process, techniques and roles
are clearly specified for an effective risk management practice. Furthermore,
we also define the artifacts produced by the activities.

4. A questionnaire has been developed to identify the risk factors within the
software development projects. It consists of a comprehensive number of
close questions which are arranged by following the software development
components and uses as a taxonomy to identify the causes of anticipate and
unanticipate problems in software projects.

28

www.manaraa.com

CHAPTER 3

Subjective Expert Judgement and Bayesian Belief
Network

Contents
3.1 Subjective Expert Judgement . 29
3.2 Bayesian Belief Network (BBN) 31
3.3 Conclusion . 34

Accurate estimation of project risks is always important for an effective risk man-
agement practice. However in software engineering domain precise estimation
of risks is difficult, in particular, when risk event likelihood is measured through
probability. Software risk event likelihood estimation contains much fuzziness and
uncertainty. But the estimation should be simple, reasonable and practical to im-
plement, otherwise it would not be formally followed in software projects. One
way to improve the situation is to integrate an experienced practitioner or expert
judgement to estimate the risk event likelihood. Subjective expert judgement is
an alternative and effective way for the software risk estimation. We integrate ex-
pert judgement with Bayesian Belief Network(BBN) for the risk estimation. This
section provides an overview of the subjective expert judgement and BBN.

3.1 Subjective Expert Judgement

Probability can be purely subjective when a true direct value does not exist, i.e.,
it has not yet or cannot be observed directly. In such a case the value considers
as degrees of confidence or credence to partial beliefs of expert within a specific
domain. The main focus is to put on observable values that are not known at the
time of the assessment but can be observed some time in the future. The future ob-
servable values are expressed as the subjective estimate of what the expert thinks
will be the outcome of a specific context. These values are from relevant experi-
ence, knowledge and recommendations provided by one or more external sources
that the expert trusts. A subjective measure depends only on the knowledge and
expertise of the people involved. The potential advantage is that it is fairly easy to
collect the information through interviews, questionnaires or brainstorming ses-
sions. Such a judgement commonly does not require an extensive measurement

29

www.manaraa.com

3.1 Subjective Expert Judgement

program. However the measurement may be less precise which makes it hard
to draw any conclusions. But when objective measurement value is not available
or limited data points are available to measure any context then subjective expert
judgement is a useful technique.

Subjective judgement is applied in limited areas of software engineering domain
such as cost and effort and risk estimation. A few studies attempted at a better
understanding of the expert estimation process within software project. For in-
stance, Connolly et al. [CD97] showed that the expert estimation process turns
out to be more effective when risk analysis is included. Gray et al. [GMS99] ob-
served a close relationship between software task characteristics such as the size
and module with expert judgement relevant for software effort estimation. Wohlin
et al. [WvMHR00] considered subjective factors from the project characteristics
and project success indicators to evaluate the software project success. They con-
sidered correlation analysis, principal component analysis, ranking, classification
and agreement index to study the variables of several software projects. Roppo-
nen et al. [RL00] also considered subjective judgement to estimate risks in software
projects. Similar to the existing approaches, we rely on expert or practitioners be-
lief to estimate the risks. An Expert is someone who has knowledge about either
the application area or specific domain such as risk management, security or safety.
Studies from other domain provide some common finding on subjective judge-
ment. The results show that experts perform better than models in highly pre-
dictable environment but worst in a less predictable environment [SS96]. Experts
systematically have too high confidence in their judgement, if proper learning was
not achieved [EH78], expert when comfortable with his/her current values or be-
liefs is reluctant to change opinions when faced with new knowledge. He/she may
always be biased on own judgement [Sch08].

We describe the uncertainties involved in software development projects by a sub-
jective probability distribution which maps the expert opinion. The Triangular
distribution is the most commonly used distribution for modeling expert opin-
ions [Vos00]. This is defined by three different values, i.e., i) its minimum value,
ii) most likely value and iii) maximum value. For instance, likelihood of sched-
ule overruns can be estimated into three different scales. Ideally, probability dis-
tribution should be available to the experts when expressing their belief. How-
ever, experience has shown that simple probability distributions are more tractable
and even more importantly understandable for the experts. The latter is impor-
tant as it has been observed that poor performance by experts is often not due to
lack of expertise but rather to the lack of training in subjective probability assess-
ment [GHKM00]. The main structure of such procedures is usually a variant of
the following three steps: (1) preparation for elicitation, which includes identify-
ing and selecting experts and describes the area of interest, (2) elicitation, which is
the actual collection of expert judgements and (3) post-elicitation, which includes
among other things the aggregation and analysis of expert opinions. There are
three factors, i.e., scrutability, neutrality and fairness, that must be taken care of
during elicitation of expert judgement. Scrutability or accountability is of great
importance which concerned with the generalization of the result. Therefore re-
sults must be reproducible by competent reviewers. Neutrality is also important.
This means that all elicitation and evaluation methods must be constructed such
that they encourage experts to state their true opinions. Underestimation and over-
estimation should be taken into account in relation to neutrality. Underestimation
means that the expert has little confidence in his or her experience and knowledge
and consequently gives pessimistic information. Overestimation is the opposite
and means that the expert has great confidence in his or her expertise and knowl-
edge and consequently provides optimistic information. And fairness considers

30

www.manaraa.com

3 Subjective Expert Judgement and Bayesian Belief Network

the overall judgement quality which support both scrutability and neutrality.

3.2 Bayesian Belief Network (BBN)

Bayesian Belief Network (BBN) [Jen96], based on the Bayes theorem, has already
proven to be an effective technique for reasoning under uncertainty. BBN is suc-
cessfully applied in several disciplines in particular medical and safety domain.
Some recent work employs BBN for the software risk management and software
quality [FN09, Wag09]. BBN is a mathematical model to depict interrelation of sev-
eral events by defining the conditional probability between events. However BBN
is not a model that is specifically built for risk modeling [Pea01].
BBN [Jen96] is represented as a directed acyclic graph (DAG) together with an
associated set of probability tables. The graph consists of two portions: nodes rep-
resenting the variables involved and arcs representing the causal/relevance de-
pendencies between these variables. Nodes are of various types, i.e., parent or
observable, target and intermediate nodes and are denoted as stochastic or deci-
sion variables where multiple variables are often used to determine the state of a
node. Each state of individual node is expressed using probability density func-
tions(pdf). Probability density specifies the confidence in the various outcomes
of a set of variables connected to a node and depends conditionally on the sta-
tus of the parent nodes at the incoming edges. For instance, user passive involve-
ment and practitioner lack of domain knowledge increase the likelihood of require-
ments errors. User’s passive involvement and lack of knowledge are considered
as root causes and are treated as parent nodes. These parent nodes, as shown
in Figure 3.1, influence the likelihood of requirements errors which is the target
node. Therefore, requirements error causally depends on two parent nodes and
may further influence the poor quality of product. These nodes values can be ob-
tained by observing the elicited requirements and practitioners expertise level in
the project. However statisticians argue that the probability value should be ob-
tained from long-observation of random process. But in software engineering risk
management domain, it is difficult to obtain long observations of data points due
to uniqueness of project, technology evolution and lack of historical data. Further-
more, assigning a precise node value is also difficult in software risk management.
The problematic part of modeling uncertainty is that the outcome of an event is
dependent on many factors and on the outcome of other events. Hence, there are
complex dependency relationships that need to be accounted for. This is handled
by the underlying computation model of BBN, which is based on Bayes rule.
The main advantage of BBN is that it visually represents the causal relationship
among the factors related to uncertainty. The relationship can be serial which refers
to the situation where belief propagates through the nodes to increase confidence
of the occurrence of a certain event. Or can be diverging which distributes a certain
belief through several nodes and finally converging a connection, which combines
certain beliefs to increase the confidence for the occurrence of an event. The BBN
method is applied whenever using BBN as a decision making tool. The applica-
tion of the BBN method consists of four main tasks, i.e., i) identify the interesting
variables, ii) construction of the BBN topology, iii) elicitation of probabilities to
nodes and edges and iv) making computations. Each of this steps is important
and non-trivial. Errors in each of these steps can have a large effect on the out-
come. The first task includes the assumption that the model builder can decide
on some basis what is important for a specific domain. Construction of the BBN
topology is done by examining the variables involved and their relationships and
by modeling these explicitly as nodes and arches in hierarchy of DAGs. Elicita-

31

www.manaraa.com

3.2 Bayesian Belief Network (BBN)

Requirements
error

Practitioner lack
of knowledge

Poor quality

User passive
involvement

Figure 3.1: Bayesian Belief Network Example

tion of probabilities to nodes and edges involves the collection and aggregation
of evidence/information, such as elicitation of an expert opinions as described in
the previous section. The probabilistic relationship between the nodes in a DAG
is described using node probability tables (NPT) where variables can be indepen-
dent or dependent. Making computation involves propagating information and
evidence entered into the observable nodes of the BBN topology. These pieces of
information are propagated to the target node of the topology through the inter-
mediate nodes. Propagation is done by updating the conditional probabilities on
the edges of the topology taking the new evidence into consideration. There exist
evidence propagation algorithms, such as Bayesian evidence propagation [Jen96]
and the HUGIN propagation algorithm [Lit].
The key feature of BBNs is that it allows to model and reason about uncertainty.
BBN forces the assessor to expose all assumptions about the impact of different
forms of evidence and hence provides a visible and auditable dependability or
safety argument. We need to provide the evidence of a software risk event occur-
rence based on the factors as causes responsible for the event. Some of the factors
are serial, where one factor X influences another factor Y and then Y further influ-
ences Z. Otherwise there can be diverging connection, factor X influences Y and Z
and these factors are more important for the software risk. Factors can also be con-
verging such as several evidences influence to one single consequence, i.e., shown
in Figure 3.2. To develop causal relationship among the risk factors and their influ-
ence into software risk management, some contributors focus on the Bayesian Be-
lief Network to estimate the risk probability. Fan et al. [FcY04] use BBNs to support
decision making of software project risk management. The approach combines
BBNs in an algorithmic way to identify, predict and estimate risks in a probabilis-
tic fashion. Risk management mainly considers ensuring the project activities in a
cost-effective way by dealing dynamic risk management, where activities are ad-
justed dynamically and varied costs are the major concern. The risk management
process should be continuous and BBNs are updated in each iteration with new
project data to generate new estimations. The tasks for the process by following
the IEEE standard 1540 are initialization, risk profile, risk analysis and monitoring
and risk treatment. The risk analysis step considers the risks beyond the schedule,
budget and quality. Saturation module is used to adjust the resources utilized for a
specific activity in development. Hui et al. [AL04] contribute with a mathematical

32

www.manaraa.com

3 Subjective Expert Judgement and Bayesian Belief Network

CA B

C

A
B

Serial

Diverging

B

C

A

Converging

Figure 3.2: Node Propagation in BBN

model based on BBNs to prove that software development team can rely on it to
accurately predict and calculate the software risks and their impact on a software
development project. The proposed model is conceptualized into a tool that eases
to understand and calculate the risks of development project. The tool can be used
at any phase of the development and only requires to input the initial probabilities
of the risk factors or default probability value when the real value is not available.
Then it generates the impact weight level in terms of a numeric value. Fenton et al.
visualize software risk by turning the risk into causal model [FN08]. They consider
causal taxonomy of a risk by specifying causes, consequences and control actions
or a mitigations. The main concept is based on BBN and further used to measure
the risk [FN09]. Wagner [Wag09] considers activity based quality model to derive
Bayesian networks for software quality assessment and prediction. The approach
uses activity, fact and indicator nodes by following activity, fact and metrics of an
activity based quality model. BBN is successfully applied to assess the safety level
of a safety case [FLN+98, WK07] and calculating return of security investment of
developing a secure system [HGBJ05]. BBN is also used to aid decision makers in
domains such as medicine, software, mechanical industry, economy and military.
In the medical domain BBN is used for supporting decisions in the diagnosis of
muscle and nerve diseases, in antibiotic treatment systems and in diabetes advi-
sory systems.

33

www.manaraa.com

3.3 Conclusion

3.3 Conclusion

There exist uncertainties throughout the life cycle of the software product. These
uncertainties involve a wide variety of factors, such as incomplete understanding
of project context, inaccurate estimation of effort, change of project scope, market
demand and deployment. On the other hand, assessing risks related to these un-
certainties is difficult as the observation needs to last for a long duration despite of
any evolution such as evolution of technology, scope and business process. There-
fore subjective judgement aids such type of estimation. We use subject judgement
through Triangular distribution scales and assign it into the BBN’s node to model
the uncertainty and estimate the risk event likelihood and priority. Risk manage-
ment paves the way for project management. All obstacles should be removed or
reduced at a desired level so that project has a successful journey until completion.
For this, a systematic risk management process is important in order to manage the
risk. Next chapters provide detailed about the proposed risk management model
and use expert judgement and BBN.

34

www.manaraa.com

CHAPTER 4

Holistic View of the Software Development Risk
Management

Contents
4.1 Holistic View of Software Development Risk Management at

Early Development . 35
4.2 Project Success and Failure Factors 37
4.3 Software Development Components 39
4.4 Model Based Development . 56
4.5 Conclusion . 57

The proposed software development risk management model is grounded on the
holistic concept, where more than one perspective or vision of the software risk is
considered. By the term holistic view, we consider risks related to technical and
non-technical issues. This section illustrates details of the software development
components and their refinement through component-element-factor hierarchy so
that goal-driven risk management can be considered from a holistic view.

4.1 Holistic View of Software Development Risk
Management at Early Development

To develop an effective risk management model, it is important to consider risks
from all technical and non-technical dimensions of the development. Note that,
technical issues are directly associated with the hardware and software of the sys-
tem such as tool support, development platform, project technical complexity, spe-
cific device or hardware and operational specification of the product to-be devel-
oped and deployed. Non-technical issues concern with the organizational envi-
ronment, project execution, development process, methodological and managerial
issues. We consider goals as objectives, expectations and constraints of techni-
cal and non-technical issues and risk factors that obstruct these goals. A details
of early development components and project success factors are the fundamental
sources, which ease to understand the background foundation for the construction

35

www.manaraa.com

4.1 Holistic View of Software Development Risk Management at Early
Development

Project Process
Specification,

time-to-market,
quality

People,
environment

Operation &
maintenance

Technology

Technical and non-technical issues

Figure 4.1: Holistic View of Software Development Risk Management

of the goal-driven risk management model. The approach focuses on the compo-
nents from the early development phase, i.e., pre-project planning, project initia-
tion and requirements engineering phase. The focus is more on the issues related
to requirements engineering phase. The main task of requirements engineering is
to describe the problem space completely and correctly and to produce artifacts
concerning a comprehensive requirements specification document. The integra-
tion of risk management into requirements engineering facilitates to manage any
change related to cost, schedule, scope, requirement and quality rather easily. For
example, a study found that cost related to fixing errors during the testing phase
is 20 times more than the cost of fixing these in the requirements phase [Boe81].
Furthermore, this integration also allows to identify, manage and trace the critical
software risks from early development phase.

However, there exists numerous errors in the requirements engineering phase,
which pose the most expensive software risks. Research results concluded that
poor requirements are the main cause of the project failure [Gla98, vL09]. Devel-
opers fail to address requirements because they consider requirement specification
is the responsibility of customers. But customers rarely have a clear conception of
their problem domain and often not being able to state their requirements explic-
itly. Although they still expect that the end-product meets their needs and sup-
ports the business purposes. Sometimes customers are also not actively involved
during the requirements elicitation process, which makes the specification erro-
neous. Developers when involved in requirements engineering activities may not
have adequate project domain knowledge or poor understanding of the project
scope [Gla99]. Requirements engineering process may be ineffective. Practition-
ers commonly focus more on the solution oriented view rather than understanding
the problem space. Projects may not allocate adequate schedule for the require-
ments engineering. These are the causes of the requirements problems. Therefore,
if factors related to the requirements problems are addressed up-front, even be-
fore the actual elicitation of requirements, practitioners in development team can
effectively contribute to reduce the requirements errors.

Besides requirements problems, one should also focus on the other issues related
to the project execution, practitioner, user and environment that are responsible
for software risks. There is a tendency of the project managers to emphasize more
on the technical issues. Research results suggest that the cause of most project fail-
ure has little to do with the technical issues. Failed projects suffer from the poor

36

www.manaraa.com

4 Holistic View of the Software Development Risk Management

management of people related problems [McC96, Lin99]. Non-technical issues are
more difficult to manage compared to the technical ones. It requires certain exper-
tise such as ability to estimate accurately, motivate practitioners and well planned
project execution activities. Issues like management support and leadership qual-
ity, individual productivity, customer/user involvement and user-practitioner re-
lationship are also important from the non-technical perspective. Non-technical
issues are not straight forward to manage. Education or training are not adequate
to achieve these qualities and individual needs certain experience. Therefore risk
management framework needs a holistic approach, as shown in Figure 4.1. Risk
management should consider issues related to project execution, technology, de-
velopment process, product specification and quality, people, organizational envi-
ronment, operation and maintenance. These dimensions combine both technical
and non-technical issues and provide a systematic way to consider risks.

4.2 Project Success and Failure Factors

Before going to the details of the development components, this section specifies
factors related to project success and failure, so that expectations and obstruc-
tions of the components can be systematically determined. Thus we provide a
greater understanding of the early technical and non-technical software develop-
ment components from the perspective of both project success and failure. For any
project, it is necessary to know what generally constitute a successful project and
which are relevant for a specific project context. However, what constitutes a suc-
cessful project, i.e., what is the definition and perception of success in this context
is ambiguous. Defining software project success or failure is a complicated under-
taking and is rarely described in absolute terms [PV09]. But the factors related to
the project success and failure are necessary to identify the goals and risk factors.

Project Success The perception of a success and successful project differs sig-
nificantly among the various project stakeholders, i.e., customer/user, practitioner
and senior/executive management. The reasons are that each of these groups has
different backgrounds, responsibilities, expectations and understanding for evalu-
ating the project success. Generally well accepted industry standard and organiza-
tional managerial definition of projects success are cited as: meet agreed upon busi-
ness objective and complete on time and within budget [Lin99, WvMHR00], meets
all customer/user requirements and achieve user satisfaction [JKD02, PVSG05].
The management position appears to be more political oriented to keep customers
and users happy rather than the developers. Project practitioners and other stake-
holders add additional factors and associated complexities to define the project
success. User satisfaction is the most widely used measure in the literature for the
project success, it is measured by four major constructs: information quality, sys-
tem usefulness, system usage and system complexity [CDN88, JK00]. The factors
related to the customer/user perspective are: realistic expectation and require-
ments, active customer/user involvement, review and feedback. User involve-
ment supports the developer of better system design and contributes for a more
usable final product [PV09]. Practitioners also concern values about the achieve-
ment of the business objectives [Lin99, PVSG05] and do not blindly judge only
the budget and schedule issues for the success. Specifically, project practition-
ers always focus more on the micro-level inward-looking project view that is due
to their intensive involvement during the development compared to the manage-
ment [Gla99, Pre96, McC96, Lin99, IHMFJ09, IH10]. They distinguish a project to

37

www.manaraa.com

4.2 Project Success and Failure Factors

be a success whether it is completed or canceled. Some of the factors related to the
success are:
• Technically realistic requirements
• Realistic estimation of schedule, cost and effort
• Product works as per specification
• Effective leaders
• Effective team performance, specifically small and high performing team
• Clear and complete project scope
• Diverse and synergistic development team
• Adequate development facilities
• Effectiveness of project management
• Participation and support of senior/executive management
• The practitioners’ individual issues such as motivation, team work, sense of

achievement, and perception. Motivation has the single largest impact on
practitioner productivity.

Researches consider a project success from multi dimensional concept, i.e., Delone
et al. [DM92] consider success through the system use, information quality, sys-
tem quality and individual and organizational impact. Project success depends on
issues related to the development components. The project goals must support
the stakeholder and business needs. Development team and development process
confirm the estimated cost, schedule and desired quality for a successful project.

Project Failure Project failure opposes the project success. Factors related to the
failure directly or indirectly obstruct the project success factors. Similar to suc-
cess factors, there exist several study results on project failure factors. A survey
result has showed, that project management and organizational issues are the two
main perspectives of the project failure [S.N09]. Linberg [Lin99] also obtained ex-
perienced project participants’ opinion about the least successful project they have
worked on. The participants have emphasized on poor project management and
poor marketing research as the main factors of failure. Lack of project management
also fails to estimate the human and technical resources necessary for the project.
Poor communication between end users and developers and level of customer and
user involvement also contribute both for the success and failure [PV09]. Lack
of general expertise on the team and lack of clear role definition are considered
as two common obstacles, that have more significant impact on project effective-
ness [JK00]. There are other influential factors contribute to the project failure:
overly optimistic estimation, inadequate project planning and inadequate change
management [Bro95, McC96], lack of resources, poor understanding, customer
/user passive involvement, lack of domain knowledge of the customer business
process and inadequate requirements gathering [KS04, AMN07, IN08, IJH09].
Both success and failure factors are mainly identified from the stated survey stud-
ies of the experienced practitioners. A project success factor specifies a number
of success indicators, contribute to the project outcomes and vice versa for the
failure. Furthermore, these factors combine both technical and nontechnical as-
pects of the development. Project success or failure is a question of perception
and the factors related with them vary from project to project context. It is indeed
a multidimensional concept. We carefully analyze the factors from the develop-
ment components as base line foundation for the goal-driven risk management.
We believe that if these components receive more attention at early stage then the
development activities can avoid or minimize the problems significantly towards
a successful software development project.

38

www.manaraa.com

4 Holistic View of the Software Development Risk Management

4.3 Software Development Components

To develop a goal based risk management model, it is important to understand
the basic components of the software development, in particular, what it takes
to succeed within development and future use and maintenance of the system.
This section contains detailed elaboration of the development components that are
essential for any project.

According to Boehm [Boe91] and McConnell [McC96] effective and efficient soft-
ware development and a ultimate project success can be framed in terms of peo-
ple, process, product and technology. These four dimensions are related upon
each other. For instance, process guides people to perform development activ-
ity and technology assists the development effort for a successful product. Saari-
nen [Saa96] also considered four dimensions: system development process, use,
quality and organizational impact as measures of the system success. These di-
mensions illustrate that a system can be both successful and unsuccessful depend-
ing on the metric selected. Procaccino et al. [PVOD02] further categorized seven
factors such as management, customers and users, requirements, estimations and
scheduling, project manager, software development process, and development
personnel, which contribute to the success or failure of software systems. Wallance
et al. [WK04, WKR04] considered software project risks into six dimensions. They
are: team risk, organizational risk, requirement risk, planning and control risk,
user risk and complexity risk. The nature of the project has high influence to these
risk dimensions. For instance, strategic application observed higher complexity
risk and outsourced project exhibited greater team risk. Different risks have dif-
ferent level of impact on the project, specifically on the development components.
And elaboration of these components supports the link between the factors related
to the project success and failure.

We summarize the development components into five important dimensions.
They are: project execution, development process, product, human, and environ-
ment (internal & external). These dimensions are multidimensional and consider
fundamental issues related to the development and future use of the system. Indi-
vidual component rather provides an abstract view which is generally comprised
of single or multiple elements. Elements are the essential parts that describe a
component. The elements may further be characterized by single or multiple fac-
tors, if necessary, also refined into sub-factors. Factors are the lowest level refine-
ment of the development component and represent a concrete aspect of the devel-
opment. Elements and factors together represent the components, by following
development activities, project execution, product specification and quality, hu-
man and environmental issues and the resulting artifacts. GSRM defines this as
a component-element-factor hierarchy, as shown in Figure 4.2. E.g., project exe-
cution component are described by elements, such as planning and control, scope
and tool support; where planning and control are further refined into factors such
as budget, schedule and milestones, monitor, complexity and change manage-
ment. Generally, the elements are intertwined, interdependent and contribute to
attain single or multiple development goals. GSRM focuses on the expectations,
objectives and constraints of the development components that directly and in-
directly relate to the project success. This hierarchy includes both technical and
non-technical development issues, which facilitate to consider a holistic view on
software development risk management. An overview of the components is given
below:

39

www.manaraa.com

4.3 Software Development Components

Poject
execution Environment

project scope

 planning &
control

Development
process

development
process

risk
management

Product

specification

Human

Team work

management
support

practitioner

customer/user

organisational
stability

Resource

budget

schedule &
milestone

roles &
responsibilities

success criteria

boundary

development

project execution

activity business

quality

security

domain
knowledge

Skill & ability

participation

knowledge

leadership

commitment

structure

policies &
procedures

development

infrastructure

method

requirements
faults

process
compliance

change
management

Consistency &
dependency

component

factor

legend

monitor

tool support

safety

privacy

other quality
factors

element

motivation &
productivity

activity

method

requirements

documentation

complexity

Integration in
development

time-to-market

maintenance

operation

Testing

process

Figure 4.2: Component-Element-Factor Hierarchy

4.3.1 Project Execution

This dimension focuses on the issues related to the execution of the software de-
velopment project and its economic benefit. It is highly dependent on the human
factors in particular project manager’s skill and ability to estimate, execute and
manage the project. Project managers also have the important responsibility of
defining specific roles for members of the development team [EM97, JK00] and
tracking progress through their support for on-going status meetings and reports.
The development component contains several elements, which further are charac-
terized by the factors and sub-factors. Figure 4.3 depicts the details of this dimen-
sion.

4.3.1.1 Planning and Control

Software projects are inherently complex, without careful plan projects can never
be succeeded. This element contains certain project execution characteristics such
as project plan, budget, schedule, roles, change management and monitor of the
overall status of the project. A well planned project will be actively controlled, vi-
sualized its progress and people will be given the support to accomplish specific

40

www.manaraa.com

4 Holistic View of the Software Development Risk Management

poject
execution

project scope
 planning &

control

budget &
schedule

roles &
responsibilities

success
criteria

boundary

development &
maintenance

change
management

monitor

tool support

complexity

milestone
& effort

role
definition

balance
responsibility

technical/
task

external
links

capability

limitations

goals

user groups

Modelling

Programming
platform

build/
deployment

testing

documentation

project execution

project
management

communication
& coordination

track activities
&resource

Feasible

innovation

knowledge
reuse

ROI

riskiness

Figure 4.3: Project Execution

project task. Failure to plan is one of the most critical mistakes of any project con-
text [McC98]. The factors and associated sub-factors of the project planning and
control are given below.

Budget, schedule, roles, and monitor Budget, schedule, resource and effort
estimation should be realistic, feasible and agreed with the main stakeholder. An
experienced project manager can assist for the accurate planning and controls of
the software development project. He also needs to be aware when it is benefi-
cial to add people to the team [McC96] and recognize when something has gone
wrong in the project. There are many roles needed to be filled for performing
the project management, development, risk management, deployment and main-
tenance activities based on the specific responsibilities. Clear definition of this
role and balanced assignments of responsibilities to the involved stakeholders is
critical for the project planning and control. The roles and responsibilities of the

41

www.manaraa.com

4.3 Software Development Components

individual task should be clearly defined during the project planning and control.
Typical project roles include project owner, customer/user, project manager, team
leader, business analyst, requirement engineer, developer, designer, tester, docu-
menter, trainer, release manager and risk manager. Note that, the nature of the
roles differs according to the process and methodology that is used. For instance,
in a distributed environment, there exist addition roles, such as coordinator of the
distributed sites, site manager and infrastructure manager. Estimation of efforts,
costs, and duration as well as allocation of resources should be accurate and re-
alistic. However, realistic estimation is not always possible ,in particular, at early
stage of the development. For instance, requirement elicitation and coding may
take much more time than the initial estimated ones. Some factors are difficult by
nature to be estimated, i.e., project complexity, riskiness of the project, practitioner
motivation and productivity. Subjective judgment and previous project data as-
sists the overall estimation process. But over-estimation or under-estimation can
pose potential problems. Over-estimation might cause the project to take longer
time and allocate more staff that the actual one and under-estimation is always
danger to the product quality [HC99].

Once the project planning and control factors are defined and the project is under
way, then one of the main focuses is to monitor the project progress. A contin-
uous monitor is necessary to track what is occurring and to compare the actual
achievement against the estimated budget, schedule and deliverables. It includes
the revision, if required, to bring the project back on its target. Project managers in
case of small project or project steering committee are responsible to monitor the
project progress. Furthermore, practitioners of individual teams are also monitor
specific part and report to the team leader or project manager. Formal meetings
after certain time interval generally take place to update the status of the project
activities. But frequent monitoring is not always possible because it takes time and
uses resources.

Complexity This element considers the inherent complexity of the software
project. Complexity in a software project arises from various aspects. It depends
on the project context, size, user groups, subsystems, external interface, develop-
ment environment, operational and maintenance constraints. Common factors of
the complexity are: highly complex task being automated, immature technology,
large number of external links, high number of user groups who will use the final
product, new technology and environment where the software will operate, hard-
ware with which the software must associate, data migration and product volatil-
ity. These complexity factors also determine the riskiness nature of the project.
Large project size is by nature complex. In a survey study, practitioners men-
tioned the difficulties of managing changes to large projects with many require-
ments [PV09]. However, at early stage it is also difficult to address the issues re-
lated to the project complexities. We advocate to determine the main influential
areas of project complexity at early stage, so that issues related to the complexity
can be addressed throughout the course of development.

Change management Software under development often goes through numer-
ous changes throughout its life cycle. These changes take place because the re-
quirements and system change continuously, people make mistakes, hardware
manufacturers make changes to the system, engineers introduce improvements
or change of laws and legislation. Customers, users or even the project manager
may demand for any change at any stage of the development. For instance, at later
stage users get a clear idea of what is really needed. Wide varieties of changes

42

www.manaraa.com

4 Holistic View of the Software Development Risk Management

at later stage or inability to control the changes can expose in many cases insur-
mountable risks including expensive rework, increase time and schedule. Thus
certain changes link with risks. And a systematic change management is criti-
cal for adoption of the changes. We focus on analyzing the changes through the
goals, in particular, by reasoning why a change is required and what are the factors
that obstruct the change and impact of the change to the product artifact. This re-
search attempts to link the critical change with the goal-driven risk management,
so that changes are properly analyzed. Nevertheless, there exist factors, which
require adequate attention to control the risks related to the changes. They are:
key user active participation from early development, change analysis through
major project goals such budget, schedule, quality, feature, project complexity. A
complete change control procedure (i.e., practice of evaluating, controlling and
approving important changes in a systematic manner) is also necessary. A well
defined change control procedure protects the project from unnecessary changes,
increase accountability of accepting or rejecting the changes and manage changes
in an effective way.

4.3.1.2 Project Scope

For any software project, the project scope needs to be clearly agreed with the
main stakeholders. It provides a common vision, before the project gets rolling.
The scope contains criteria, which are committed to the success of the project and
certain boundaries, which limit the project scope. The boundaries define the inside
and outside issues of the application and their interactions within the environment.
Project boundary concerns with the project capabilities and limitations. It ensures
alignment of all the stakeholders’ expectations into a common direction and de-
creases the possibility of scope creeps. The scope should also determine the level
of information reuse from the previous project and inherent novelty of the project.
If the project can reuse the practitioners’ knowledge from previous project due to
similar type of project and less innovative then certainly scopes are achievable. A
high innovative project increases challenges in the project. The scope should also
confirm the economic feasibility of the project. By economic feasibility we mean
whether it makes sense to undertake the project. Project scope also supports to
determine the main scope of risk management. It is the entry point, which guides
to initiate the development activities and allows to reason how the system under
development will fit into the future customer environment.

4.3.1.3 Tools Support

Tools support contributes for an effective development project. It can be catego-
rized into two different groups, e.g., tools to support development and mainte-
nance and project execution.

Tools to support development activities are generally used for modeling, program-
ming, testing, build/deployment and documentation. For instance, requirements
are sometimes modeled using UML use case diagrams or simply documented as
plain text. Once the requirements are specified, then the desired features are ac-
commodated by design modeling tool. Models provide initially abstract descrip-
tions of a system, they need to be realized into a product by programming or cod-
ing. Since programming is done using some programming language, the tools
involved need, at least, to support the actual coding. Testing is also done on the
end-product, it is also important to look into what type of input the testing tools
can operate on and how these tools relate to the modeling and programming tools

43

www.manaraa.com

4.3 Software Development Components

in terms of re-engineering and similar. Build or deployment tools are used to pack-
age services or applications for release, which includes making a self-executable
instance of the service/application. It needs to consider the issues related to the
product operation. For every stage of the development, documentation is crucial.
Manually documenting a system is time and resource demanding. Hence, any type
of automatic documentation ability in modeling and development tools is impor-
tant for an efficient maintenance and evolution of the product. Manually adding
information in automatic generated documentation is not always straight forward
and often avoided or forgotten. Documentation also needs to provide mainte-
nance support of the product. If the project mainly focuses on the maintenance or
partially considers maintenance, then similar development tools can support the
maintenance activities.
Tools to support project execution mainly focus on the project management, com-
munication and collaboration within the project. Project management tools govern
the administration of a project and hence support the project leader and partici-
pants in terms of schedule, cost, milestone and activities. Such tools should also
aid in the planning and evaluation of a project and in the allocation of resources to
the different tasks. However, if the project leader has no other means to gain any
knowledge of the people involved, such as people involve in distributed develop-
ment sites, he needs to rely on tool-support to keep track of abilities, productivity,
schedule, cost and other estimation variables. The communication and collabora-
tion tools are used to support handling check in and check out of documents, as
well as simultaneously working on the same document and graceful integration
of changes. If the development site of the project is distributed, then the com-
munication and collaboration tool is the main way to exchange information and
update the artifacts and project reports. However, the tool selection depends on
several factors. Tools can support effectual collaboration, proper project planning
and progress monitoring. When it comes for the development tools selection then
we need to focus: modeling technique, traceability facility, programming platform
and team location. Factors and sub-factors for the project management tool are:
tracking people, activities, schedule, budget, communication and coordination,
document exchange, any particular information relating to the project, produc-
tivity and correctness. Finally, project participants require expertise regarding the
usage of the selected tools.

4.3.2 Process

The software development process commonly deals with the activities and meth-
ods that people use to develop the project artifacts. The activities can be orga-
nized in different ways, which are known as process model, if required, tailored
by following the project context. Adequate development process is essential for a
software project [PNJE06]. This component includes processes related to develop-
ment, deployment, maintenance and risk management. Therefore, it includes both
management and technical methodologies. Generally, an individual activity con-
tains single or multiple tasks and task may further categorize into sub-tasks and
steps responsible to perform certain actions. Some people see software process
as rigid, restrictive and inefficient and often ignore of using the complete process.
A project with little attention to the process may spend more time in meeting or
correcting defects, which takes more time [McC98]. Therefore, an investment of
well-defined and effective process at the beginning of the project produces large
return later. Figure 4.4 depicts details about the process and the associated ele-
ments and factors.

44

www.manaraa.com

4 Holistic View of the Software Development Risk Management

process

Process
compliance

Development

activity

method

usageactivity

Risk
management

phases

adequacy

traceability

Consistency
& dependency

training &
awarenesssteps

integration

activity

role

adequacy

artifact

steps

artifact

method feasible

Figure 4.4: Process details

4.3.2.1 Development Process

The dimension of the development process focuses on the activities of the life cy-
cle phases, specifically requirement, designing, coding, testing, implementation
and maintenance. It represents an area of high leverage for improving the de-
velopment speed [McC96]. Process related factors such as effective method and
complete definition of steps within each phase, adequacy of the development ac-
tivities, roles definition and strong coordination among the roles are necessary for
the development process. The development process should have a strong focus
on the customers’ needs and desires. Requirement determination is one of the
most important steps in software development process [SS97] and uses a base line
for downstream development activities. Identification and management of com-
plete system requirements helps to alleviate costly rework [BB01]. If the identified
requirements are appeared to be unrealistic, then developers may become discour-
age and not fully committed to the project goals. Survey results have showed that
requirements specification and managing user requirements were the two biggest
problems associated in the software project [LW00]. Requirements management
includes relative changes of project scope and understanding between the devel-
opment team and customer/users regarding requirements and the functionality
of the final product. Factors like adequacy in modeling and managing of require-
ments, realistic/ achievable requirements and traceability of requirements to de-
sign decision and further phases of the development as well as product operation
and maintenance are essential for an effective requirements engineering practice.

Once the requirement are finalized then the development process continues with
the architectural and detailed design, coding, debugging, testing and creating of

45

www.manaraa.com

4.3 Software Development Components

potential releasable product. It is important to complete most of the requirement
work before continuing with the design. The architecture provides a technical
structure of the project for the conceptual integrity. Bad architecture and design
make the rest of the project difficult to complete. In reality, development activi-
ties are overlapped to some extent, done about the same time over the life of the
project. At early stage, factors like overall system overview, subsystems and their
interactions, inclusion of stable requirements, user interface, traceability among
the artifacts, subsystem for design and design document are important. At later
stage factors like coding standard, quality coding, user training, operative man-
ual, data migration, maintenance plan, consistence among the code, data, quality
due to the maintenance are important. These factors have a tremendous impact
on the lifetime system costs. Testing ensures that all requirements have been im-
plemented at an acceptable quality level and product will successfully operate in
customer premises. Factors like tests plan and adequate test cases, that focus entire
system scope are essential for performing the testing.

4.3.2.2 Risk Management

For an effective and successful software development, risk management must be
an integral part of the overall system management. It allows to avoid disaster and
can significantly improve the software project outcomes [JKD02, Cha05]. Active
risk management practice is necessary in the management of technological sys-
tems, such as software intensive systems, where system failure can be caused by
the failure of hardware, software, organization or its people. Therefore, risk man-
agement should be integrated as early as possible in the software project.

In summary, there exists no well-established set of protocols and commonly ac-
cepted procedures, which a software development project can follow directly.
Most cases, each project is envisioned as a unique and distinct product. Every
organization desires its own development and risk management process based on
its objective, policy and overall environment. Lack of a well-developed and ac-
ceptable protocol causes major implications on software risk management. But
organizations tailor any existing standard which the project can follow. Adequate
and effective development process can support alignment of the developed arti-
facts. This also motivates the practitioners in terms of process compliance and can
spend most of their time on productive work. Inadequate processes incur rework,
excessive cost and the practitioners spend a lot of time correcting mistakes.

4.3.2.3 Consistency and Dependency

A well defined development process does not provide full guarantee for the end
product quality. In particular, when the activities of different development phases
are distributed in several sites, then the consistency and dependency among the
activities and resulting artifacts are necessary. In software project, development
and risk management activities are generally sequential in a sense that later stage
activity depends on previous activity. For instance, risk mitigation needs the cor-
rect risk identification and assessment result as well as architectural design of the
subsystems needs the complete specification. Synchronization among the tasks
and methods within the activities and consistency among the artifacts are neces-
sary for a complete and correct artifact.

46

www.manaraa.com

4 Holistic View of the Software Development Risk Management

4.3.2.4 Process Compliance

Process compliance concerns with the implementation and usage of the organi-
zation’s specific process during the actual development. Process orientation is a
straightforward way to save time in software project in particular to avoid rework
of the artifacts. Practitioners need to be aware and trained the existing processes
and underlying techniques. A process is only effective if used properly and if the
developers are able to make them familiar with the tool. Process assessment is
also important to validate the process for its completeness and effective contribu-
tion to meet the specific purposes. ISO standards such as ISO 9001:2000 specifies
the adoption of process approach for the quality management system [ISOb] and
ISO/IEC 15504 introduces measurement framework for the assessment of process
capability [ISOa]. These standards can be used as a guidelines to ensure the pro-
cess compliance. Process needs to be feasible, so that it can effectively contribute
to achieve the project specific goals. Practitioners have a common tendency to ne-
glect the process, specifically when process can be overly rigid, overly bureaucratic
or ineffective to attain specific development goals. They believe that process may
limit their creativity, nevertheless effective process supports creativity and morale.
Therefore simplified and effective process construction is essential.

4.3.3 Product

This component considers the product artifacts such as specification, quality, time-
to-market, requirements faults, operation and maintenance.

4.3.3.1 Specification

Business and requirement specifications are the two main artifacts at early stage.
Clear and complete specification document by specifying to which extent it meets
customer/user expectation and organizational objective support a quality soft-
ware deliverables. Deliverables may include system functionalities, screens, re-
ports, operational specification and system utilities. Realistic/achievable require-
ments are desirable. However, generating a complete requirement specification is
a challenging task, which depends on many factors i.e., accurate level of abstrac-
tion, requirement modeling techniques, complete process, customer/user active
involvement, adequate domain information and correct assumption. We follow ar-
tifact oriented view, i.e., artifact concept, attributes and dependencies to elicit, man-
age and document the requirements. Furthermore, requirement priority, traceabil-
ity and validation support the accurate design decision and the implementation of
the requirements.

4.3.3.2 Time-To-Market

Time-To-Market(TTM) of a software product is necessary for its competitive exis-
tence in the market. The factors related to TTM include theoretical and technical
aspects of the software development work as well as work environment and team
dynamics of the project [JJ02]. It allows to understand the market demand of a spe-
cific product that helps to produce a complete and correct specification of the up-
coming product. Software projects always suffer market risks [Sch04].There is no
standard parameters to measure this element but factors like product complexity,
innovation, market and competitor analysis result, customer expectations, overall
development time, quality, technology, and organizational complexity are always
influential to determine the time-to-market. The competitor analysis should focus

47

www.manaraa.com

4.3 Software Development Components

on transition cost, brand quality, product differentiation and total purchase cost of
similar product. One study result showed, that requirements stability, time pres-
sure, information flow and individual competence are highly correlated factors
with TTM [WA95]. If TTM is not the major goal of a product then some of these
factors can be ignored otherwise these factors need full attention.

4.3.4 Quality

Quality builds the backbone of the system. It describes a comprehensive view
on the demanded properties of an application, its architecture and environment,
which must exhibit within the system landscape [Gil92]. For an effective project,
quality assurance activities must begin during the requirements engineering ac-
tivities or even before, so that early stage errors can be identified , accumulated
and resolved. There exist quality models to support the quality assurance ac-
tivities. For example, hierarchical model is based on a set of criteria or attribute
and each of which has a set of measures and metrics associated with it [MRW77].
Recently activity based quality model [DWP07, WDW08] introduces to precisely
specify the quality properties by following the activities. The quality model is
the central means for specifying quality requirements, planning, quality assurance
and evaluating quality. This model specifies the quality requirements based on the
system context. McCall grouped software quality into three sets: product opera-
tion, revision and transition. The individual set contains several attributes such
as operation consists of correctness, reliability, efficiency, integrity and usability,
revision consists of maintainability, testability and flexibility and transition con-
sists of portability, reusability and interoperability [MRW77]. Quality attributes
are represented through quality requirements during the development, often dif-
ficult to implement, but at the same time they are decisive factors for the success
or failure of project [Gli07]. The activity model was built based on information
about the characteristics of the system and other important facts and their respec-
tive influence on quality activities such as maintenance [DWP07]. A continuous
decomposition of business goals that steer the description of behavioural aspects
and characteristics of the business and the underlying systems is required to iden-
tify the requirements from the quality attributes [SFI09]. Well quality management
planning w.r.t. project context is necessary. A software project generally focuses
on an information system or embedded system development. This distinction is
important, because what is appropriate in one context might not be in another.
Quality factors such as usability, maintainability, security, privacy, and safety are
always important. A brief overview of security, privacy and safety are given below
since these factors were considered in different projects during the course of this
dissertation.

4.3.4.1 Security and Privacy

Security and privacy are properties, which if violated, may threaten the system
for a potential attack. Software development must consider security and privacy
issues from the early development stage [IMJ10, HIK+10]. Identifying and ana-
lyzing security and privacy requirements by considering the threats, vulnerabili-
ties, privacy harms and relevant legislation at early development is now well rec-
ognized by the industry and research community. Furthermore, elicited require-
ments are also needed to be traced through out the development for a security and
privacy aware software development. Security properties such as confidentiality,
integrity, availability, authenticity and non-reputation and privacy properties such

48

www.manaraa.com

4 Holistic View of the Software Development Risk Management

as consent, enforcement, notice, awareness and participation are required to con-
sider in the elicitation process [AER02, MG06]. Accurate security and privacy level
and pay off benefit of the security and privacy investment is necessary for the suc-
cessfully implementation of security and privacy aware solution. We advocate to
focus on the goals and threats from the security and privacy perspective by consid-
ering the project context from early stage of the development. However, detailed
investigation will only depend on the project context and stakeholder desires.

4.3.4.2 Safety

Safety is a system property which ensures predictable performance of the product
under normal and abnormal conditions [Her99]. It is a critical property of a safety-
critical system, i.e., space, military, aerospace and automotive systems. It mini-
mizes the likelihood of unplanned event occurrence so that event consequences
can be under control. It is also difficult to confirm that a system is fully safe under
all conditions. Depending on the project context certain safety factors such as com-
plete error detection and recovery, system states and flaws and safety requirement
errors [Neu95] are required to be assessed. It is also necessary to consider and
account all environmental factors and conditions under which the software is de-
ployed. Humans factors are important for the safety systems because any mistake
can pose severe potential accident once the system is in operation or maintenance.
Similar to security, safety requirements need to be identified from the early stage of
the development. Safety and security are closely related properties, as both deals
with threat and risks to life, service and information. Therefore safety and security
requirements are co-related and play an important role in deciding whether the
software can and should be used. These requirements should consider the result
of hazard analysis and other system failure conditions.

4.3.5 Testing

Testing validates a software product with respect to the project scope, user’s needs
and requirements. It executes partial or a complete program based on predicated
and observed inputs and outputs. Therefore testing serves to identify the errors
existed in the product throughout the product life cycle. There are several types
of testing such as unit, integration, system and acceptance [Tha02]. Depending
on the availability of resources and budget, a complete test specification should
be planned at the beginning of the project. In a project, it may not be possible to
consider every unit testing due to budget constraints or large number of tests, but
unit testing is necessary ,in particular, for the critical system modules. Integra-
tion testing combines system components incrementally or non-incrementally and
checks the combined system as per the specification. Finally, system and accep-
tance testing are used to determine whether the produce is ready to release to the
customer. Generally system testing is highly technical in nature and marking the
end of the development process. Acceptance testing makes the final product ready
to delivery. Whatever the types of testing during the development, it should be
well-planned, includes documents test cases and test results should be analyzed
and addresses before the product delivery.

4.3.6 Requirements Faults

Elicit defect free requirements is a vital but difficult part in the requirements engi-
neering. Any error or fault that originates from a requirement can pose a potential

49

www.manaraa.com

4.3 Software Development Components

Requirements
defects causes

resource change human
factors

Incorrect
activities

Inadequate
understanding

External
factors

Insufficient
change

management

scope
expand
rapidly

limited
budget

inadequate
time

process

stakeholder/
user

Insifficient
involvement

Unavailable

Goal ConflictLack of skill

practitoner

Incorrect
assumption

inadequate
tool

Lack of
support for

quality
requirements

Incorrect
derivation

Emphasize
more on UML

Inadequate
verification

Insufficient
knowledge

Significant
change lately

Inadequate
level of

abstraction

modeling

Incorrect
implementation

of concept

Figure 4.5: Requirements Defects Causes

risk to the development. The identified requirements may be under-specified (e.g.
the system shall be maintainable) that makes it hard to interpret the requirement.
Sometimes requirements are over-specified which makes difficult to rationale the
requirements. Figure 4.5 shows the causes of the requirements defects by con-
sidering 5 dimensions: resource, change, human factors, RE process and model-
ing. Human factors such as practitioners’ lack of skill, insufficient knowledge and
assumption and users’ involvement, inadequate understanding are the common
causes of requirements defects.

These defects threaten the overall project success and impact on business, prod-
uct and project execution. Figure 4.6 shows the impacts of these dimensions on
the business, product and project context. For example, impacts can be delayed
business benefit, expensive rework, volatility in maintenance and cost and sched-
ule over-runs. In the worst case requirement defects can even cancel the project.
It has already been proven in the literature, that to fix a requirement defect dis-
covered at the test phase require much more time as compared to fix it during
RE [Boe81]. The most cost-effective point to detect and mitigate defects is during
requirements engineering. This task is challenging due to variations of the applica-
tion and project specific context. Requirement types, risks and assessment strate-
gies vary a lot based from application to application. There is no silver bullet (i.e.,
single tactic) for managing requirement defects. The activity is a human-based that
is always prone to errors. Even if the project size is medium or small, the schedule
pressure forces to overlook the requirement defects. It also explicitly depends on
the domain expert and the individual perception.

We consider the factors related to the requirement defects. The main focus lies
on the business and application specification and user and system requirements.
Business specification considers business goals, rules, vision, domains and pro-
cess. User requirements include use cases and scenarios that present the users’ ex-

50

www.manaraa.com

4 Holistic View of the Software Development Risk Management

Requirement
defect
impact

Product
Poor interface
Unnecessary complexity,
Missing features,
Incomplete design,
Wrong assumption
Volatility in maintenance

Project
Cost & schedule overrun,
Rework,
Unclear scope,
Increase Complexity,
Cancel

Business
Delayed business
benefit,
Market rejection ,
Missing user needs,
Loss of revenue,

Figure 4.6: Requirements Defects Consequences

pectations derived from the business specification. And system requirement cov-
ers functional, quality and architectural requirements. These requirements are re-
viewed to identify the errors and faults. We follow requirements quality attributes:
complete, correct, stable, feasible, measurable, traceable based on the IEEE std 830-
1998 [IEE98], requirements implementation, stakeholder goals and product quality
to identify the errors.

4.3.7 Operation

Product operation makes the developed or updated system in live to a prepared set
of users’ environment. At this stage the project ownership moves from the project
team to the customer organization. Therefore all project activities should end in a
safe, protected and secured way so that the software does not have any negative
impact to the day-to-day business operation [Tha02]. This task is challenging as
today’s customers demand the software to be delivered on time at the lowest pos-
sible cost to the operation. The developed solution would not create significant
complexity to the overall system environment. Any fault at product operation will
almost certainly translate into direct operational and/or financial impacts on the
performing organization. The risks may impede that the implementation covers
a much broader spectrum than that of the development. Operational failure may
include unpredictable cost to the project, delay schedule, loss of revenue and cus-
tomer/user dissatisfaction.

Several issues needed to be confirmed before delivering the system to the cus-
tomer. We divide the issues from two different perspectives, i.e., system deploy-
ment and transition. System deployment accumulates all preceding development
efforts and the resulting artifacts. It includes the execution of all steps to educate
the users on use of the system, availability of the required resource, create the en-
vironment where the system is going to operate, confirming all data required are
available, migrate, initialize and accurate. It also confirms that the system compo-
nents properly support the overall business functions. Supporting document such
as user/technical document and training manual should be available before train-
ing the user as well as deploying the system. The training should be carried out
as professionally and competently as possible. The first training experience is vital

51

www.manaraa.com

4.3 Software Development Components

for the successful usage of the system. All training should be performed before the
physical migration of the system. System transition mainly switches the system
as whole from development mode to the operation and maintenance mode. The
transition plan should be aware and synchronized among all the involved parties.
It triggers from the deployment activities, which may be beyond the control of
the project manger as the product is going to be implemented into the customer
premises. Problems may occur at any time during the course of deployment. Ex-
pected things may not happen and some thing happens that was not planned.
The more the system is complex and extensive the higher is the likelihood that
something can go wrong during the operation. Users support activities apart from
training such as provide direct assistance during operation, data management and
problem reporting and solving during the operation are also important.

4.3.8 Maintenance

This element considers the issues related to the future evolution of the product.
Several studies have shown that more than 60 percent of the costs associated with
a software product are expanded due to the maintenance, once the product is al-
ready delivered [Tha02]. This task is challenging and often technically and man-
agerially more difficult compared to a project which considers only the develop-
ment. Risks related to the maintenance differ from the risks related to the devel-
opment [WdOA05] because in maintenance generally the software is in operation
that increases difficulties to alter the system. Risk management is critical for the
project focused on the maintenance. It can be a costly and risky job, once the prod-
uct is in operation and initiates the maintenance activity. Maintenance harmonizes
the system with the reality and adopts the continuous change issues with the ex-
isting software. It can not be avoided. Perfect maintenance of product may or may
not increase the value of the software from an economic point of view [SB03]. But it
is very subtle, since maintainability to a specific functionality may increase the cost
but probably have no effect on the income. The goal of maintenance is to keep the
software system actual and useful. It can be event driven, for instance customer
needs to modify their existing software to support their business needs, product
needs to compliance with the legislation or the technology may be obsolete. Main-
tenance activity analyzes in-depth the existing system, before any modification
can take place. We consider several factors related to the development and man-
agement, by investigating the existing literature [Sne96, CAW97, SB03, WdOA05].
These factors highly influence upon the success of the maintenance activities.
The factors are classified into two different groups: development and manage-
ment, as shown in Figure 4.7. The development group considers the issues related
with the artifacts from the development. These issues arise from requirements, de-
sign, coding, testing and quality, which trigger the software maintenance. There
are several factors of the development responsible to consider maintenance issues.
Requirement errors such as incomplete, unstable, incorrect requirements or new
requirements from the customer premises to support additional functionalities
are important to consider. These factors may increase volatility of the product.
The maintenance operation should preserve, if not increase the quality of the sys-
tem under maintenance. Therefore product error rate, performance, productivity
and consistency between documentation and code need to be measured. Com-
plete and correct maintenance specification is important within this context. The
sources for the change can be from organizational problems, supporting new busi-
ness goals, market demand and so on. Therefore management, customer support,
marketing and development staff should interview to identify the need for the de-
sired change. Quality factors like performance, resource consumption, portability,

52

www.manaraa.com

4 Holistic View of the Software Development Risk Management

Maintenance

Development
Volatility
Complexity
Quality
Retest
Dead & Cloned code
Documentation

Management
Process
Plan
Execution
Release

Figure 4.7: Factors related to Maintenance

safety and security need to be analyzed during the maintenance. The maintenance
should not violate the existing coding standard and retain at least the similar stan-
dard as considered during the development. Cloned or dead code also need to
be eliminated. Moreover, it should also not increase the overall product complex-
ity [TBK99]. Modified system must be retested through unit, integration or system
test before releasing the updated version. Finally all documents including techni-
cal specification, design and user manual should be updated once the maintenance
activity is carried out.
The management part considers issues related to maintenance plan, process, exe-
cution and release management. Generally maintenance plan and control activity
is more intensive than other modes of software engineering project [Tha02]. The
plan should include maintenance efforts, required process and specification [IEEa].
In general maintenance should be a controlled process to ensure that the software-
to-be maintained continues to meet the end user needs. The process should con-
sider planning, documentation, policies and methods used to support the main-
tenance. Process should also adequately addresses the issues related to quality,
complexity and volatility of the product and adapt the rapidly changes of the cus-
tomer business environment. Maintenance project or maintenance part of a devel-
opment project need a separate plan, schedule and budget estimation, role alloca-
tion, maintenance contract in terms of what should include or should not include
in maintenance and acceptance criteria.

4.3.9 Human

Human plays the central role of software project. Issues related to human have
more impact on software productivity and quality than any other factor [McC96].
Therefore, all kinds of human factors can deeply affect the results and efficiency
of a project. Humans involved in software project fall into four categories, which
are practitioner, customer/user, team and management support [ID08]. It is im-
portant to identify the people, in particular, who have a stake or interest in the
project as early as possible [HC99]. There always exists inter-relations and over-

53

www.manaraa.com

4.3 Software Development Components

laps among these four categories. Every category contains multiple factors, which
include desirable properties that are essential during the development. But moti-
vation and productivity is more important for every role played in software devel-
opment. Handling human factors is non-trivial and challenging for the software
development. For instance, increasing productivity of a team should first look at
the team assigned work, background knowledge, motivation, staff selection, train-
ing or focus on the potential benefit of the team. Certainly, it is difficult to achieve
satisfactory level of these factors.

4.3.9.1 Motivation and Productivity

The motivation and productivity of individual and teams are necessary in a soft-
ware project. Motivation is considered as the single most influential factor on the
productivity during the development [Boe81, McC96]. Productivity is directly re-
lated with motivation. Motivation is an internal engine and its benefits show up
over a long period of time. It requires work type, personal sense of achievement
and reward [Gla98, Lin99, PV09]. Without motivation, it is very unlikely that a
person work hard. Motivation and morale are enhanced, where targets are achiev-
able. Linberg identified sense of involvement, celebrations, positive feedbacks and
autonomy; as the main influential factors for the motivation from the developer
perspective [Lin99]. Everybody who is involved in the developing project has not
the same motivation, productivity and objectives. Project managers need to care-
fully construct the teams in order to achieve the high productivity.

4.3.9.2 Practitioner

Individual practitioner’s factors, such as knowledge, skill, programming or de-
sign ability, cooperation, availability and training are essential during the devel-
opment. These factors increase the overall productivity of the individuals. Practi-
tioners also expect realistic estimation of budget and schedule, technically feasible
requirements, interesting and challenging work from the project. These factors mo-
tivate the practitioners and collectively offer the greatest potential benefits. They
support overcoming problems of the other dimension such as process, product or
project execution. For instance, knowledgeable and experienced project manage-
ment effectively contributes to the project success [Pre96]. There is also a need for
negotiation skills in working with the customer and users on scheduling, budget-
ing and communicating the development team’s activities to the users.

4.3.9.3 Customer/User

Customers and users are the people who pay to have the software developed and
maintained. They are also responsible to use the product and to accept or reject the
final deliverable product. User’s adequate knowledge about the project context
and IT competence are required for identifying and managing the requirements as
well as for the overall development, use and maintenance of the product. User’s
active participation and close collaboration with the main project participants such
as project manager, requirements engineer and architect are critical in several as-
pects. First, users will mainly use the product and second, incorporating user ex-
pectations to the final product increase the chance of project success. User partic-
ipation from early stage saves time because it eliminates one of the main sources
of requirement changes and reduces defect for a quality product. User should also
effectively participate during the system deployment because at the end they will
use the product. Typically in large software project, there exist various number of

54

www.manaraa.com

4 Holistic View of the Software Development Risk Management

user groups. Active participation of the key user is necessary. User involvement
supports customer confidence to the development team and products as well as
increases trust to the management.

4.3.9.4 Team Work

Team structure and work motivate for high productivity in any sizable project. The
team can be in different types: democratic, hierarchical and virtual; based on the
structure, communication, roles and responsibilities, power and location [EH04].
Obtaining a common decision is difficult for a democratic team, because no one
is in charge. But this type of structure fits well for the agile development process.
Hierarchical team is common, however may hinder an effective communication
among the team members, specifically when hierarchical layers are increased. Vir-
tual team is suitable for distributed development environment which can be either
a democratic or a hierarchical organization structure. In a virtual team, cultural
gap, miscommunication and lack of coordination are common problems. What-
ever the team type, there are common factors which are important for a productive
team work: construction of a balanced team with sound knowledge of project do-
main and technical issues, talent and creative members, healthy arguments, prob-
lems solving, effective communication and coordination, ability to work with un-
certain objective and top management. Practitioners who find their work inter-
esting are highly motivated. Therefore, for a productive team work, practitioners
must group and assign work that they find interesting. A software development
project team, no matter what size, requires differentiating among the roles played
by the team members. A small team improves the communication and supports
high degree of collaboration. In a project, which runs locally, it is sufficient to have
regular either informal contact or meetings among the team members or members
of different teams. In a distributed project a more formal way of sharing knowl-
edge and information is required: project members should contribute actively and
update their work status via Wiki-pages, discussion groups or whatever the suit-
able communication means worked for the project.

4.3.9.5 Management Support

Management leadership quality and their direct or indirect involvement to the de-
velopment activities are already recognized to be essential during the develop-
ment. Leadership is the ability, which influence the project practitioners to act in
a particular way in order to achieve specific goals. Different styles of leadership
are needed in different situations [HC99]. However, factors like positive attitude,
timely and reasonable decision, motivating and empowering team and removing
obstacles signify a good leadership quality. The sponsor commitment needs to be
lasted throughout the project. They should motivate the project practitioners for
productive and creative work. Management skills (or lack of) have direct impli-
cations for project risk management and ultimately project success [Gro95]. Good
project leadership establishes a clear vision for the project [McC98]. The man-
agement support can also encourage the customer/user to increase the active in-
volvement. They should have high confidence level, motivated to review overall
organizational improvement and customer focus for a successful project outcome.

4.3.10 Environment (Internal & External)

Surrounding environment of the software development projects both in-house
sourcing or outsourced are the main elements and factors of this component.

55

www.manaraa.com

4.4 Model Based Development

4.3.10.1 Organizational Stability

It focuses on the structure of the organization that facilitates the overall project
operation. Organizational structures can have an enormous impact on the overall
project execution [HC99]. A formal organizational structure, in particular, hierar-
chical structure is articulated in the staff hierarchy chart. However, this type of
structure is supported by an informal structure of contacts and communication
which gradually grows up among the practitioners during the course of work.
Unstructured hierarchy hinders the decision making process and incurs chaos to
the development and deployment of the system. Organization structure is also
departmentalized based on employees’ skill, customer category, product line, ser-
vices, and geographic location. Effective communication and coordination among
the departments are important to keep the overall stability. In software develop-
ment domain, functional/task oriented approach or based on life cycle phases are
used to departmentalize the groups. Whatever is the structure, free communi-
cation and effective decision among the technical, business, marketing, customer
support and human resource groups at the right time is critical for an organiza-
tion. If the groups are more decentralized, then the communication will be slower.
Projects with tight schedule and budget pressure need to consider centralized com-
munication. The organizational context also includes processes to support the
software development life cycle process. It includes management, infrastructure,
improvement and training process by following the IEEE standard 12207 [IEEb].
These processes can be applied across multiple projects undertaken by the organi-
zation. Organizational existing policies, procedures, culture and political bias are
influential factors for an effective project and risk management as well as software
development practice.

4.3.10.2 Resource

We consider two types of resources: one for the development, such as availability
of appropriate tools and personnel, adequate training facilities, periodic training
need assessment and training evaluation; the other for infrastructure, such as ad-
equate communication(i.e., Internet, telephone) and other(i.e., power, office space,
computer) facility. We need not only to ensure availability of the essential resource
in key areas when required, but also proper utilization of these resources. There-
fore resources are identified and allocated according to the activities during the
project plan. Stable organizational structure and adequate development facilities
certainly motivate the practitioners to increase their productivity.

4.4 Model Based Development

Model based development is a cross-cutting concern within the component-element-
factor hierarchy. Modern software project involves a variety of stakeholders, in-
herently complex and interconnect multiple components through heterogeneous
environment. Model based development using base concept, specific notations,
syntax, semantic and level of abstraction effectively contribute to analyze the sys-
tems [FR07]. This recent development trend is used for tool support, development
process, product specification, quality factors (i.e. security, safety), testing and
validation. It describes the real system or part of the system, its characteristics,
properties and application view. There are many advantages when one works on
the model-level, in particular, cost effectiveness and communicative capabilities
providing a discussion platform in the industrial contexts. Models use graphical

56

www.manaraa.com

4 Holistic View of the Software Development Risk Management

notation, which facilitates communication of the model across subsystems within
various application domains [Her99]. Several factors are involved for a successful
model based development, such as level of abstraction, modeling concept and its
implementation, tool support, technique, scalability and complexity. There are also
other factors, such as lack of abstraction, imprecise mapping between model and
code, low scalability, unpredictable and unrealistic modeling view can increase the
overall complexity and cost of the model based development. Software projects
consider model based development to undertake the complex project part must
address the factors which incur risks of using model based development.

4.5 Conclusion

We characterize the software development components in five different dimen-
sions and refine them to elements and factors. Detailed understanding of software
development components facilitates to identify the expectations and constraints,
which a project should attain. These are the goals obstructed by the risk through-
out the product life cycle. Elaboration of component-element-factors allows a com-
prehensive understanding of the goals and risk factors of a software project. This
hierarchy also supports to focus on holistic view of the development. For instance,
elements and factors under human and environment are mostly non-technical and
elements and factors under product and process are mostly technical, but we an-
alyze them combinedly for the software development risk management. Depend-
ing on the actual project context, one can emphasize more on one component and
downplay the others. Some of the factors can be fitted into more than one compo-
nents group. Therefore a focus on one dimension also influences other dimensions.
Ideally at early stage we recommend to consider every dimension equally.

57

www.manaraa.com

4.5 Conclusion

58

www.manaraa.com

CHAPTER 5

Goal-driven Software Development Risk Management
Model(GSRM)

Contents
5.1 GSRM Framework . 59
5.2 Generic Process Model . 66
5.3 GSRM activities . 68
5.4 Roles & Responsibilities . 91
5.5 Integration of GSRM into Requirements Engineering 93
5.6 Conclusion of GSRM . 101

The main contribution of this dissertation is the development of a Goal-driven
Software Development Risk Management Model (GSRM) to identify, assess and
manage risks in requirements engineering phase and to trace the risks throughout
the development and during the product operation and maintenance. This chapter
presents the main contribution and describes the goal-driven risk management
modeling framework, meta-model, process and the artifacts involved within the
approach. Finally, the fundamental concept regarding the integration of GSRM
into requirements engineering is also presented in this chapter.

5.1 GSRM Framework

The proposed risk management modeling framework is based on goal modeling
languages. Risks are always negations of the goals. Therefore, the concept of
risk is directly related to the concept of goal. We believe identifying goals cer-
tainly anchors the risk management activities in particular to identify, analyze and
manage the risks. As the proposed approach considers risk management activities
in requirements engineering, we focus on the existing goal modeling methods of
requirements engineering. Goal modeling languages have long been recognized
in the requirements engineering community as useful to elicit, analyze, negoti-
ate and document requirement specifications for the system environments. They
certainly play the central role in the requirements engineering process. Several

59

www.manaraa.com

5.1 GSRM Framework

methodologies and frameworks such as KAOS [DvLF93, vL09], i* [Yu96], and Tro-
pos [BPG+04] contribute to the Goal Oriented Requirement Engineering method-
ology (GORE). Our framework adopts the basic goal modeling concept and fo-
cuses on the holistic view of software development risk management.
The proposed approach extends the KAOS (Keep All Objectives Satisfied) goal
modeling method [vL09] to support software development risk management. This
is because KAOS defines an obstacle as a construct that is a pre-condition for non-
satisfaction of a goal in terms of expectation, assumption, domain property and
constraint [vLL00]. The concept of an obstacle can directly be mapped to the soft-
ware development risk that negatively influences specific project goals. Further-
more, KAOS also provides a detailed specification about the goals through a goal
taxonomy by classifying the goals as hard, soft, functional and non-functional.
This allows to categorize the goals related to software development components.
GSRM adopts the goal and obstacle concept from KAOS and maps them with
project success indicator and software risk. The identified risks must be addressed
and GSRM does this by assigning suitable early treatment actions. The approach
extends further with risk assessment and treatment for managing software devel-
opment risks. This allows reasoning and tracing of treatment actions and their
ability to mitigate risks, and hence, to fulfill the identified goals so that the project
can successfully reach its desired destination. Note that KAOS also introduces the
risk analysis based on the goal models. However, the focus is more to ensure the
completeness of requirements and to analyze safety hazards and security threats
for the critical systems. But our focus is on the software development risk from
the holistic perspective considering all technical and non-technical development
issues during the development. In our case, the requirements’ completeness or
security is considered as a sub-goal by GSRM that critically influences the project
success.

5.1.1 Levels of Abstraction

The model supports different levels of abstraction from goal to obstacle and finally
to the treatment. Figure 5.1 gives an overview on the different levels of abstraction,
depicting exemplary questions that symbolize the characteristics of the proposed
model. We divide the levels of abstraction into three main areas within the scope of
this research. These levels build the bridge from the goals of any software project
to the risks that obstruct the goals and treatments that reduce the risks in order
to satisfy the goals. On the top, there are the goals, i.e., objectives, expectations
and constraints of the development components. In the middle are the risk fac-
tors that directly or indirectly obstruct the goal to fulfill and incur problems to the
software development. The risk factors cause undesirable events and these events
further bring negative consequence to the goals. Risk events are then assessed to
estimate the severity of the risk. At the bottom part, there are the control actions
that obstruct the risks and their consequences and contribute to attain the goals.
Risk treatment also requires to monitor the effectiveness of the control actions and
to identify any new risk within the development. Risk specification is the main
artifact type produced by the model as shown in the right part of the Figure. It
includes several concepts such as goal, obstacle, treatment and associated visual-
ization model.
These levels of abstraction support refinement of goals and obstacles and estab-
lishment of the obstruction and contribution link among them. The refinement is
fulfilled through vertical abstraction so that goals are traced by the control action
for their satisfaction [SPHP02]. The more goals and risks are refined, the better
it can support the risk management at early stage. The refinement links are con-

60

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

What are the issues relating to the project success?
What are the goals, expectations, constraints of the development component-
element-factor from the perspective of project success ?

Overview of Goals

How are risk factors related with each other and contribute for the risk event
occurence?
How severe are the risks within the projectt?
What are the important risks for the project ?

What are the risk factors that obstruct the goals ?
What are the risk factors that create problems within the development?

Treatment and monitor

What are the control actions that countermeasure the risks?
How effective are the control actions?
Are there any new risks that arise within the development environment ?

Risks specification

Obstacle

Consequence

Le
ve

ls
 o

f a
bs

tr
ac

tio
n

G
oal

m
odel

O
bstacle m

odel

C
ausal relationship m

odel

Figure 5.1: Overview of Risk Abstraction Levels

tributed through two different ways. One way shows the goal decomposition from
the high level goals to sub-goals and obstacle decomposition from risk factor to
risk event. The other way shows control actions and their contribution to the goal
satisfaction. Therefore during top to down as well as during down to top refine-
ment, we have to satisfy the relation among the activities and artifacts to serve the
purpose of software development risk management.

5.1.2 Modeling Views

There are three different modeling views structured by GSRM related to goals,
obstacles and causal relationship.
Goal model: Goal is the core concept of this approach. It specifies the expectations,
objectives and constraints of the development components, stakeholders and busi-
ness environment related to the project success. The identified goals are refined
from higher to lower level so that they can be quantified to more achievable ones.
Therefore the goal model shows the interaction among the higher level goals to the
lower ones so that they can combinedly contribute during the development to at-
tain the factors relating to project success. The model is represented by a diagram
and consists of goals and their refinement links from higher to lower level goals.
Obstacle model: Obstacles are the negation to the goals and responsible for the
occurrence of any undesirable events during the software development project and
use of the product. The obstacles and their consequences are identified, analyzed
and prioritized by following the identified goals. Similar to goals, obstacles are
also refined from risk factor to the risk event. Thus the obstacle model elaborates
the goal model (i.e. goal-risk model) by including the obstruction link from the
obstacle to the goals and refinement link from risk factor to the risk event. We
follow the same graphical notation to represent the goal and obstacle models as
used in KAOS [vL09].
Causal relationship model: Risk factors, as causes, are refined into single or mul-
tiple risk events that negatively influence the goals. This allows us to model the
causal relationship between the risk event and associated factors and their obstruc-
tion of the goals. The model describes which risk factors are related with each other
and how they are accountable to the risk event occurrence. This leads to the combi-
nation of all common risks and eases the risk event estimation of single or multiple

61

www.manaraa.com

5.1 GSRM Framework

factors. We use the Bayesian Belief Network (BBN) [Jen96, BC01] to construct the
causal relationship model.

5.1.3 GSRM Layers

The framework consists of four layers to support the software development risk
management model. The advantage of a layer based modeling framework is that
it includes suitable task, method and technique for performing specific activity
under a given layer. Each layer supports iterative activities for managing soft-
ware development risks and produces single or multiple artifacts. These artifacts
are part of the risk specification concept that support the decision making process
during the software development, operation and maintenance.

Goal Layer The goal layer focuses on the factors that contribute effectively to
complete the project activities and directly link to the project success. These goals
are important as they describe what needs to be done for a project to be successful
and for the responsible agents to attain the goals. Goals in GSRM consider several
dimensions of the software development components including project execution,
process, product, human and internal and external environment (i.e. as stated in
the previous Section 4) and map them to the project success indicators. These goals
are project specific and focus on the economic benefit, project success criteria and
boundary, knowledge gathering and reuse, user satisfaction, quality, vendor repu-
tation, successful delivery and other critical goals of the product. Goal satisfaction
requires cooperation among the system agents. For GSRM, these agents are the
project stakeholders, practitioners, tools, language, hardware, development facil-
ities and so on. The main activity of this layer is to identify and model the goals.
However, before goal specification, project stakeholder should agree on a concrete
risk management plan , in particular, the risk management scope, underlying pro-
cess, risk threshold and resources. A detailed goal list is the main artifact produced
by this layer. Goal modeling supports refinement of coarsely grained higher level
goals to finely grained lower level goals through AND or OR refinement. In GSRM,
the latter is referred to as sub-goals. Each sub-goal in the refinement contributes
to the parent goal. The more the goals are refined the easier it is to identify and
analyze the risk factors that obstruct the goals. A graphical representation of the
goal refinement is the core part of the goal model. Satisfaction of these sub-goals
certainly attains the main goal. Goal types, such as soft goals are suitable for the
goal-driven risk management context as there are generally multiple alternatives
for single goal satisfaction. The same sub-goal that relates to a specific develop-
ment component also contributes to the satisfaction of other development com-
ponents. These sub-goals are important for the project and require extra care for
their fulfillment. Therefore, if required, the goals are prioritized according to their
importance to the project success.

GSRM provides a set of guidelines for goal and sub-goal formulation, in particu-
lar, we attempt to map the existing goal types and categories from the literature to
specify the expectations from the software development components and project
success factors. We follow the informal temporal pattern to represent the goal as
stated in KAOS [vL09]. The pattern structures an assertion into a prefix and a
condition/property. Assertion is the statement of intent of some condition/prop-
erty of the software development component. These goals are hard or soft by na-
ture. There may also have behavior goals, which represent the intended behavior
declaratively. Improve, reduce and minimize are the common prefixes for repre-
senting the goals. For instance, a statement could be reduce [erroneous requirement],

62

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

whereby the prefix reduce represents a goal that demands a reduction of error from
the elicited requirement as undesirable property.

Obstacle Layer Obstacles are the main causes that reduce the ability to achieve
a single or multiple goals. We treat risk factors as obstacles that directly or indi-
rectly lead to a goal negation and create problems in the project. Obstacles are the
opposites of the goals (i.e., undesirable ones that shadow the goals). Therefore, the
obstacle categories should be aligned with and derived from the goal categories
and model the situation about how several obstacles violate the identified goals.
The obstacle layer enhances the goal clarity. It identifies the potential software de-
velopment risk factors and formulates the obstruction to the goal dissatisfaction.
Similar to the goal model, the obstacle model also refines to provide a complete
overview of the risk factors exist in the project. The main focus is to identify as
many risk factors as possible so that corresponding control actions can be selected
in the early stage. Software development risk factors support different categories
of obstacle such as dissatisfaction, lack of adequacy, misinformation, wrong as-
sumption and inaccuracy.

The obstacle layer supports the risk identification activities and GSRM uses a com-
prehensive list of questions and arranges them by following component-element-
factor hierarchy to identify the risk factors. This supports to categorize the risk fac-
tors and groups them under the same category. Note that, there are also risk factors
that may not directly obstruct a particular goal but pose problems during devel-
opment. This layer also allows such risk types to be expressed and formulated as
risk factors, both within one project, but also as a reusable risk factor component.
Examples of such obstacles are: trust between customer and practitioner, legal
disputes from a local context of a global software development project. The risk
obstacle layer establishes the obstruction link from the risk factors to the sub-goals
and from event to the main goal. The same risk obstacle can be relevant to more
than one goal. This is important to be expressed by the risk obstacle layer, as it is
crucial information when considering effective treatment options. Risk factors that
cross-cut several goals are in general more effective to counter. Risk factor iden-
tification, categorization, and modeling are the main tasks of this layer. However
the risks identified by this layer are not sufficient to determine the control actions
because risk factors need to be quantified to determine its severity. Therefore the
identified obstacles are analyzed further in the assessment layer.

Assessment Layer The assessment layer analyzes the risk events as a conse-
quence of single or multiple risk factors to the goal. The risk quantification is
an important first step in assessing the risk [BRT93]. However, this task is non-
trivial due to the inherent subjective nature of the risks in software engineering
domain [Kon01]. This layer precisely annotates the individual software develop-
ment risk event. Furthermore, it also establishes the causal relationship model
between risk factors and risk events. The layer focuses on the severity of the risk
events consequence to the goal negation. Therefore, relationship among the tech-
nical and non-technical software development risks and the corresponding quan-
titative evaluation to the potential project goals, is the main contribution of this
layer. For high prioritized software development goals, obstacle identification and
refinement should be extensive. We use the Bayesian Belief Network to support the
causal relationship model by mapping the risk modeling elements to probability
nodes.

Each risk event is characterized by two properties: likelihood and impact [BC01].
Likelihood specifies the possibility of a risk event occurrence and is modeled as

63

www.manaraa.com

5.1 GSRM Framework

a property of risk event. The impact quantifies the negative consequence by the
risk event to the single or multiple goals. The same risk factor may lead to more
than one risk events and the same risk event can obstruct more than one goals. On
the other way around, a goal is obstructed by multiple obstacles that relate risk
events and associate factors. This representation allows to model situations where
an event is influenced by more than one risk factor and impacts on one or several
goals. An obstruction link is established from the risk event to the specific goal
that it obstructs. This supports to construct goal-risk model by refining risk factors
to risk events and their combined obstruction of the goals. The obstacle refinement
is done in reverse manner compared to the goal refinement. The benefit of obstacle
refinement is that we do not need to analyze every individual risk factor separately
and in real project situation this point is important, in particular when the budget
and efforts are limited.

Treatment Layer The final layer focuses on the control actions to counter the
risks so that goals can be properly attained. Once the goals, risk factors and risk
events are identified and analyzed by the goal, obstacle and assessment layer, then
the final task is to implement the suitable cost effective countermeasures. There-
fore, the aim of this layer is to control the software development risks as early as
possible preferably during requirements engineering phase of the development.
The layer is also responsible to monitor the risk status throughout the development
and if needed during the operation and maintenance of the product. However, ini-
tial considerations focus on the risk events and associated factors that negatively
affect several goals, i.e., high prioritized risks. Generally, there exists an alternative
countermeasure to the obstacles but should select the most cost effective one for
the risk mitigation. This layer includes two different links: contribution link from
the control action to the goal that it fulfills and obstruction link from the control
action to the specific obstacle that it obstructs. Treatment layer allows modeling,
reasoning and tracing the adopted control action for the risk mitigation and goal
satisfaction. It also includes responsibility link from the control action to the agent
so that specific active agent would be responsible to implement the control action
to mitigate the risks.
Risk control actions should minimize, prevent or avoid software risks to attain the
goals. However, the project context is important in order to identify and select
the appropriate control action. If a project is highly risky from the beginning then
the selected control action should initially focus to completely eliminate the risk.
However, it is not always possible to eliminate the risk factors. The system agents
such as human and other development components such as tools or process should
be responsible to perform a specific task for the selected control action. The risk
treatment considers risk threshold, that is the specific level up to which a project can
accept the risk without implementing any control action. Once the selected risk
control action is implemented then we need to monitor the risk status until it is
completely mitigated. The risk status through the course of development evolves.
In particular, control actions may not effectively reduce the risks or new risk may
be identified. Therefore, the treatment layer continues to monitor risks throughout
the development and communicates with the stakeholder about the risk status by
risk status report.
Figure 5.2 shows the modeling framework of GSRM. GSRM uses the same nota-
tions for goals(parallelogram) and obstacles (reverse parallelogram) as used in the
KAOS model. On top is the goal layer which refines goal through AND and OR
refinement into sub-goals. The two middle layers collectively represent the soft-
ware development risks as obstacles which directly obstruct the goals and incur
problems to the development. And the bottom is the treatment layer which ini-

64

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

<<trace>>

<<reason>>

goal

sub-goalsub-goal

AND refinement

OR

Treatment
layer

new
goal

Assessment
layer

Goal layer

Obstacle
layer

risk
factor

risk
factor

risk
event

risk
event

s-subgoals-subgoal

risk
factor

new
agent

prevent
risk

reduce
risk

object

Figure 5.2: Framework of GSRM

tially contains goals in terms of prevention, reduction and avoidance of risks and
assigns responsibilities to the agents who implement the selected control actions to
obstruct the obstacle. The treatment layer includes contribution, obstruction and
responsibility link to the top three layers. The framework initiates with the goal in
terms of project success and ends with goals in terms of the risks mitigation.

5.1.4 Meta-model

We integrate all concepts that are used for the goal-driven risk management into
a model called meta-model. The meta-model represents the underlying conceptual
elements and relationships among the elements related to software development
risk management. When one puts all concepts together, it is required to confirm
the consistencies among the components. Thus a meta-model, as a conceptual
model, defines and inter-relates conceptual abstraction, in terms of which other
models are defined. The meta-model for goal-driven risk management includes
several model, at different levels of abstraction. It includes meta concepts (i.e.,
development components, goals, obstacles, treatment and agents) and relation-
ships among these concepts (i.e., obstruction, contribution and assignment link).
It also includes meta attributes of the meta concepts such as risk level and goal
description. Figure 5.3 depicts the meta-model of the proposed risk management
approach by including goal, obstacle, causal relationship and treatment. The root
meta-concept is the goal that appears as the main part. A goal may be OR-refined

65

www.manaraa.com

5.2 Generic Process Model

+name
+description

Hard goal Soft goal

Risk

+name
+description

Impact
+severity

Obstacle

obstructFactor

Event
+likelihood

has

Treatment

Goal

Agent Task

Risk status

+coumtermeasure
+agent

obstruct

responsible

contribute

Development
component
+element
+factor

affect

deacribe

alleviate

implies
1...*

1...*

1...*

1...*

0...*0...*

deacribe

Refinement
1 *

AND_Ref

OR_Ref

1...*

1...*

1...*

Human Technical Development
componen

assignment

derive

monitor

control

1...*

1...*

1...*

Figure 5.3: Meta-model for goal-driven risk management

or AND-refined into multiple sub-goals. The meta-concept refinement is included
into the goal model. The goal is described by the meta-attributes such as name,
description and category. A goal may be obstructed by obstacle. An obstacle con-
tains meta-relationship, e.g., obstruction link from the obstacle to the goals. Both
goals and obstacles are described by the development components but from two
different perspectives. One is to satisfy expectation, constraint, objectives, or other
desirable properties during and after the development. And the other is to incur
obstacles and problems that influence any undesirable circumstances and thus hin-
der the goals. The goal-risk model consists of risk factors as causes and risk events
as consequences that collectively contribute to the negation of a single or mul-
tiple goals. Therefore, the meta-concept risk specifies software development risk
with meta-attributes such as name, description, category and severity. The concept
treatment supports goal satisfaction and risk obstruction. And agent is responsible
for controlling the risk as a part of risk treatment. Therefore, the responsibility is
assigned to single or multiple agent types such as human, technical and develop-
ment component to control and monitor the risk.

5.2 Generic Process Model

The generic process model describes the methods involved as well as the artifacts
produced from the GSRM. As GSRM is integrated within requirements engineer-
ing, we focus on the existing activities involved in RE to support the process inte-
gration. On one hand, the process requires being systematic and simple to identify,
categorize, analyze and control software development risk. On the other hand,
the artifacts produced must provide accurate information about risks associated
within the project so that informed decision can be made about the project and its
goals from the early development stage. The generic process model defines the
main activities, artifacts and information flows.
We refer, in particular, to activities, tasks and steps to specify the process model
in a systematic way [Fir04, BWHW05]. The risk management process contains
five activities that define the major area of concern for the goal-driven risk man-
agement. The activity describes all the tasks concerning the creation of the risk
specification artifact type. Each task in turn produces an expected output based on

66

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Activity

TaskStep

Produces(output)Uses(input)

Artefact

Content Item

0..* 0..*
1 1

1..*

1..*

1..*

Attributes

1..*

Concept

uses
0..1

0..1

Role

1..*

Figure 5.4: Process Model for GSRM

the input. For producing this output, each task, if required, includes steps that de-
fine a concrete method for constructing the selected output. Figure 5.4 shows the
generic structure of the process model by including activity, task, step and artifact
of GSRM. The concept role gives an abstract description of responsibilities that di-
rectly participate within or indirectly contribute to the risk management process.
A role takes the responsibility for a specific set of artifacts and performs a set of ac-
tivities within the process in order to produce or modify the artifacts. Sometimes
roles indirectly participate within the development process such as management
support during the software project, which may contribute to or depend on the
completion of an artifact but have no direct responsibility for this artifact. Lower
part of the figure shows the detailed about the artifacts, which produced in general
by the activity and in particular by specific steps under a single task. The task also
requires single or multiple artifacts as input elements to perform the related actions
for creating the artifact. The tasks are defined under the activity which has opera-
tional characteristics representing the use of techniques. For example, techniques
use to identify the risk. Therefore, individual activity is composed of a single or
multiple tasks, where each task, if required, is a sequence of steps to produce the
artifact. Artifacts are the deliverables that are produced, modified and used by a
sequence of tasks as a part of the risk specification. It includes content that reflects
according to the concept of a specific domain, precisely defining the used elements
and their relation for specific description techniques [SPHP02, Sch]. The concept
defines the elements as attribute of a specific artifact and their dependencies with
other elements from another concept. The artifact oriented view eases to map the
dependency between the requirement and risk specification artifacts. For instance,
elicited system requirements artifact is reviewed to identify risks related to the re-
quirements and once the risks are identified, it assists in completing the attributes
of the concept.

67

www.manaraa.com

5.3 GSRM activities

5.3 GSRM activities

The activities under the generic process model describe all the tasks and steps that
are required to perform goal-driven software development risk management and
to create the risk specification artifact. In literature, several contributions, as well
as the risk management standards agreed, that to be successful, risk management
must be run as an iterative process involving repeated risk assessment and project
specific risk mitigation activities throughout the system life cycle. The risk man-
agement standard in particular ISO/IEC 16085:2006 (i.e., Systems and Software
Engineering Life Cycle Processes Risk Management) [IEE06] recommends to ap-
prove the risk management plan before performing any activities for risk manage-
ment. We follow these guidelines to describe the activities and tasks of GSRM. The
goal-driven risk management activities are performed sequentially, specifically for
the initial iteration of risk management. Then continue further, if required, de-
pending on the project context are tailored. Figure 5.5 gives an overview of the
activities, tasks and steps involved within the process model. The initial activity is
responsible to initialize the goal-based risk management activities during require-
ments engineering phase. Once the project stakeholders agree on the risk man-
agement plan then sequentially the rest of the activities are performed. A detailed
overview of the individual activities is given below. The artifact constructed by the
activities are commonly represented in standard tabular format.

5.3.1 Activity 1: Initialize Goal-driven Risk Management

As stated, this is the first activity of GSRM that initializes the goal-driven risk man-
agement activities during the software development. The main focus is to approve
the risk management as a part of the software development project by the main
project stakeholders. Therefore, this activity requires active involvement of the
management and project manager to emphasize the importance of risk manage-
ment at early development. It contains two tasks which are responsible to create
the risk management plan concept.

5.3.1.1 Determine riskiness of the project

This task is generally performed in pre-project planning phase. However, if the
task was not carried out earlier, then GSRM advocates to consider it before iden-
tifying the risk management scope. Every project has a common goal to not loose
any money. There are also projects which organizations carried out to obtain ex-
perience/ knowledge or high reputation for the future business gain. However,
whatever the benefit at the end, most projects focus on return of investment. There-
fore, economic feasibility in terms of potential costs and benefits both in a quanti-
tative and qualitative way and technical and operational feasibility are generally
extensively analyzed during the project planning phase. The planning also needs
to understand the inherent existing risks of the project. Determine project risk-
iness decides how risky the project is in terms of cost, schedule, development,
deployment, market demand, user satisfaction, profit and other related factors.
It allows to justify the rationale whether it is worthy to undertake the project.
Project riskiness can be determined in three different scales: high, medium and
low. It helps to understand critical input for GSRM by defining risk manage-
ment scope and boundary, main sources of risks and time interval to undertake
risk management activities. GSRM identifies and elaborates the main risks, un-
derstands their causal relationship and consequence of the risks for high, medium
or low risk projects. There are several elements of software development projects,

68

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Plan risk
management

Initialize
goal-driven

risk
management

Identify &
model goals

Identify & categozise
the goals

Construct the goal
model

Identify &
model

obstacles

 Assess risks

Treat &
monitor risks

Identify & categorize
the risk factor

 Estimate risk

Construct the goal-
risk model

identify possible
countermeasures

Monitor risks
throughout the
development

Select the most
potential

countermeasures
Assign agent
responsibility

Prioritize risks

Assess risk event
likelihood

Assess impact

Activity

Plan risk treatment

Task/
step

legends

Determine riskiness
of the project

Figure 5.5: The Activities and Tasks for Goal-driven Risk Management Model

as shown in Figure 5.6, which need initial attention for determining the project
riskiness [RL00, WK04]

Project execution factors, such as budget and schedule, scope and complexity
highly affect all dimensions of project riskiness. Generally, if a software project
contains less challenges in terms of complexity and innovation, realistic sched-
ule, budget and deliverable , short duration and practitioners have adequate ex-
perience from similar projects, then the overall project risk is certainly low. On
the other hand, if the project tasks are challenging and innovative, long dura-
tion, unrealistic schedule, budget and deliverable and practitioners having less
domain knowledge about the project context, then there is high possibility of a
high project risk. The decision whether project is developed in-house or should

69

www.manaraa.com

5.3 GSRM activities

be outsourced also influences the project risk. Study results showed that outsourc-
ing is risky [RKC96]. We demonstrate a simple example to outline the riskiness of
projects in terms of total cost.
Let,
TB= Total Project Budget
TE= Total Expenditure
ROI= Return of Investment
If TB ≈ TE + ROI
Then, the project is in safe situation as there is very less possibility of budget over-
runs. The project can reach its economic gain. It would not be a high risk project if
the focus is only concerned with economic gain.
If TB ≤ EC + TB
Then there is a certain chance that the project would exceed its estimated budget.
However in that case, stakeholders may consider what other goals can be achieved
such as knowledge gain, high reputation from the users. This context eventually
leads to a high risk project if the goal mainly focuses on ROI.

Budget &
schedule

Project
scope

Project
execution

adequacy
feasibility

Complexity

innovation
success criteria
limitations

technical/
operational
task
external links
user groups
maintenance

Product

specification

business
system
technical
operational
maintenance

Human

Practitioner

knowledge
experience
availability

economic
feasibility

User

cooperation
Availability
knowledge

Figure 5.6: Common Project Riskiness Factors

5.3.1.2 Plan Risk Management

The task initiates the implementation of the GSRM during the early development
and aligns it with the requirements engineering activities. It focuses on the several
parameters that require confirming from the project manager and main project
stakeholders including risk management scope, generic risk events and associ-
ated thresholds, schedule and resource, risk treatment and monitor strategy. The
primary project artifacts such as business goals, project authorization documents
(e.g., system vision, project plan, budget and schedule related information) and
project riskiness nature are required to define the risk initialization parameters.
We assume, at early stage, when the project is initiated then the business goals and
project scope are already defined and the system vision is ready for the customer

70

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

approval. It would be effective, at this stage, to define and agree the risk manage-
ment scope and to assign responsibilities, authority and schedule for the risk man-
agement. The scope shall also define objectives along with the boundaries for risk
management in particular which risks may be ruled out from the running project.
Furthermore, when information needs is going to be changed such as change of
business processes, goals, main project stakeholders (e.g., sponsor, management
and development team members), scope, project execution constrains and the or-
ganization structure then this task can be repeated. On the other hand, if necessary,
the plan also needs to be revised due to significant changes of the overall risk level
in the project or wrong initial assumption about the risk scope or project goals.
In particular, the risk management scope, budget, schedule, role allocation and
risk threshold need revision accordingly. This activity is imperative for any project
situation because depending on the project context, organization may not pay at-
tention to consider any formal risk management practice. As some researches have
already concluded risk management is not well applied in practice [Rop99, Pfl00].
Our studies results also agreed with this conclusion [IHMFJ09, IH10]. Therefore,
the plan risk management task enforces the development team to consider a com-
plete risk management process during requirements engineering so that risk as-
sessment and management are formally integrated during the development. Once
the plan has been agreed on then the remaining risk management activities con-
tinue for the project. A complete risk management plan is the main artifact concept
from this activity.

Artifact: Risk Management Plan The artifact contains a set of attributes as
shown in Figure 5.7 to represent risk management plan.
• Scope: The scope of risk management, during the early stage w.r.t. the run-

ning project in particular the main development components and boundaries
which are covered by the risk management. This scope eases to determine
the goals for the risk management.

• Project riskiness: This value is obtained from the previous tasks in range
high, medium and low.

• Source: The organizational information, project documents, initial artifacts
and the participants response are used as source reference documents for the
risk management.

• Risk Management Process: The selected activities, tasks and techniques
used for the GSRM and associate artifacts produced by the GSRM. If re-
quired, depending on the project context, certain tasks or artifacts can be
tailored, to support effective risk management activities into the running
project. For instance, risk monitoring can be done rarely if the project suf-
fers from schedule problems.

• Risk Acceptance: The acceptance defines the threshold values of the critical
software development risks, in particular how much percentage of the risk
event likelihood or its consequence can be accepted for the running project.
The values should also be agreed on with the project stakeholders. However
at early stage sometimes it is difficult to determine the threshold values but
once the project grows then it becomes easier to determine the values. If
required, risk manager can assume values for the critical risk event at an
early stage.

• Risk Boundary: Which risks should be ruled out or not considered by the
project.

• Schedule: This attribute concerns schedule allocation for the goal-driven risk
management during the running project. In particular, the time frame esti-

71

www.manaraa.com

5.3 GSRM activities

mates and allocates for performing the main risk management activities and
for producing the risk specification artifact.

• Responsibility and Authority: The persons who are responsible for per-
forming the risk management activities and managing the artifacts. The re-
sponsibility also covers the communication on the results ,in particular, the
critical risk management information to the project stakeholders.

• Communication: This attribute concerns how risk information and risk man-
agement would communicate with the management, practitioners and cus-
tomer/user.

<<concept type>>
Risk management plan

- Scope
- Project riskiness
- Source
- Process
- Risk acceptance
- Risk boundary
- Schedule
- Responsibility and authority
- Communication

Figure 5.7: Attributes for the Risk Management Plan Concept

5.3.2 Activity 2: Identify & Model Goals

Once the risk management plan is initialized, then the next activity is to identify
and to model the goals by focusing on the state of the development components
and mapping them to the project success factors. This activity identifies the ob-
jectives, expectations and constraints of the component-element-factor hierarchy
so that project participants contribute to fulfill these constraints on the way to a
successful development path. The activity consists of two different tasks: identify
and categorize the goals and model the goals. The identified goals are, if necessary,
refined or revised so that they reflect the stakeholders expectation, project success
factors, project scope and business goals. The more the goals are elaborated, the
better it eases the obstacle identification for any context.

5.3.2.1 Identify & Categorize Goals

The goals are mainly expectations, constraints and problems from the project con-
text. This task identifies and categorizes the goals of the development components.
We give a rule set that assists this task and advocate to use it during the risk man-
agement.
• Rule #1 Analyze the input artifacts: There are several input artifacts of the

development components, which are analyzed to identify the goals. The
artifacts are: project information such as contract, project scope, develop-
ment team details, management information, development process informa-
tion such as existing activities, tasks and methods used for the development,

72

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

deployment and maintenance, organizational information such as strategies
and objectives, policies, structure, corporate environment and development
facilities and information related to the product and customer/user. We fo-
cus on the details of the each development component and map them to
the project success indicators, as stated by the other research [JKD02, PV09].
These success indicators are the desirable outcomes of a software project.
Furthermore, customer/user, development team, and management are also
interviewed for this task. The identified goals can be of several types, such
as:

– Information goal: This goal concerns the availability of adequate in-
formation about any element or factor of the development component.
For instance, a practitioner requires adequate domain knowledge while
participating in a project and the running project domain should pro-
vide detailed information about its specification. Adequate knowledge
of practitioners or users and detailed information about the project do-
main are considered as project success indicators.

– Satisfaction goal: This goal concerns the fulfillment of any objectives,
constraints and expectations within the project. For instance, customers
would expect that the developed software satisfies their business needs
and the product meets the desirable quality. Therefore satisfy business
need and desired quality are the success factors for the product quality.

– Maintain goal: This goal concerns the retainment of certain desirable
properties of any elements and factors throughout the development.
For instance, budget as an important element of the project execution
always requires maintaining the estimated ones.

– Improve goal: This goal concerns the enrichment of any desirable char-
acteristic of any development component properties. For instance, user
active participation is always desirable, therefore their active partici-
pation, as success factors, must be improved during the development.
Improving adequacy of tasks and methods is essential for the develop-
ment.

– Reduce goal: This goal concerns the reduction of undesirable charac-
teristics of any element and factor. For instance, errors of the elicited
requirements are always common in the development. Therefore goal
should be to reduce errors in the requirements.

– Product quality factors goal: It explicitly considers quality factors of
the development, e.g., goals relating to security, safety and usability of
the product.

• Rule #2 Categorize the initial goal: The goals are categorized by follow-
ing the hierarchy of the development components. Thus at the top level,
goals relate with the single development components (i.e., project execution,
process, product, human and environment) and categorize to elements and
factors. The component-element-factor hierarchy eases the goal categoriza-
tion and allows to refine the top goals to sub-goals or sub-sub-goals. Once
the goals are categorized by the components then additional classification
is included based on the goal types (i.e. as stated in rule #1). Goals can
be behavioural such as maintain certain desirable property of the development
component which represents in clear cut sense [vL09]. These goals express
the system behaviour declaratively, which should be satisfied or maintained
throughout the development. On the contrary, there are also soft goals that
propose the desirable characteristics of the development components from
several alternative options, such as improve target condition, reduce target

73

www.manaraa.com

5.3 GSRM activities

quality or increase target quality [vL09]. Therefore, soft goals can not state
the behaviour in a strict sense like behavioural goals. They can state to im-
prove the desirable property or to reduce the undesirable property. Goals
can also be functional (e.g., information, satisfaction) or non-functional (e.g.,
product quality factor, milestone and cost) depending on their context. Goal
types and category allow to properly specify the goals for the software de-
velopment risk management.

• Rule#3 Delimit the identified goals: Once the goals are identified and cate-
gorized, then we need to delimit the number of goals that are relevant to the
project and to the risk management scope. The focus is on the goals that are
important for effective development and deployment route towards a suc-
cessful project. Some goals may be commonly related to the project success
indicators and development components, but may not be important for the
running project context. In projects with tight budget and schedule pressure,
it is always hard to consider all goals for the risk management. Business criti-
cal projects focus more on the customer’s business specific goals. Sometimes
same goals can be repeated several times and may not be well understood by
different people. Therefore the goals need to be revised or excluded. How-
ever, one should take care not to overlook any important goals from the de-
velopment components within the project context. This rule set, if required,
also supports prioritizing the goals related to the project.

5.3.2.2 Construct the Goal Model

The identified goals are required to be linked up with each other, in order to specify
their contribution to the completion of the software development activities. Occa-
sionally some of the identified goals are too much abstract which make it hard to
understand the specific meaning of the goals. Therefore, initial goals can be refined
to provide more concrete meaning, in terms of their contribution to the project suc-
cess. For instance, managing estimated budget thought development is a critical
goal. But stakeholders may feel that the goal is rather abstract level and needs ad-
equate details. The goal requires refinement to sub-goals such as clear milestones,
accurate estimation and other related sub-goals, so that they can contribute jointly
to achieve the main goal. This task focuses on the refinement of the goal and es-
tablishes refinement link from the sub-goal to the parent goal. The refinement, if
required, would be represented conversely by specifying goal abstraction through
WHY questions, so that higher level parent goals can be obtained from the contribu-
tion of the sub-goals [vL09]. On the other hand, the refinement can be formulated
by asking HOW question. In particular, how parent goals can be achieved through
the sub-goals. In goal modeling, depending on the context, AND or OR refinement
can be applicable. An AND refinement means higher level goals can only be satis-
fied by satisfying all lower level sub-goals. An OR refinement means higher level
goals can be satisfied by satisfying any of the sub-goals. Sub-goals are comple-
mentary for AND refinement and alternative for OR refinement. These two goal
refinement mechanisms are different and should not be confused with each other.
The finer the goals are refined, the easier it is to identify obstacles and treatments.
The model supports contribution link from sub-goal that contributes to the parent
goal.
Goal refinement should ideally be complete and consistent. For completeness,
all identified sub-goals would be sufficient to satisfy the parent goals. Note that,
sometimes a single sub-goal may be sufficient to support the completeness of the
parent goal as well as a single sub-goal may contribute for more than one parent
goal. This is important in the software development risk management, because

74

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

<<concept type>>
Goal details

- Name
- Description
- Category
- Source
- Sub-goals
- Priority

Figure 5.8: Attributes for the Goal Details Concept

such goals are more important from the perspective of project success and require
proper protection from the obstacles. Goal refinement should be bidirectional: one
way is that the higher level goal decomposes into sub-goals and in the other direc-
tion a sub-goal contributes to the parent goal. To support consistency, goals would
not contradict with each other. Therefore, goal refinement requires adequate do-
main knowledge about the context. For GSRM, it requires knowledge about the
project context, project main success criteria, complexity, inherent risk factors of
the project, customer organizational environment, customer/ user detailed and
other relevant issues. Sub-goals should not conflict with each other in order to
support consistency about their contribution to the parent goal. We use the same
notation for representing the goal as stated in the KAOS [vL09].

Finally, the activity constructs a detailed goal specification document that triggers
the risk assessment and management activities. The specification provides a pre-
cise description of every individual goal that should be focused by the risk man-
agement. A goal should not mix up with the operation because goal captures the
objective that should satisfy expectation or constraint. An operation is mainly con-
cern to satisfy the goal and specifies solution oriented view to satisfy the goal.
Therefore we cannot treat an operation as goal rather as a solution for a goal. The
detailed structure (i.e., concept) of the goal artifact content is given below.

Artifact: Goal details This artifact characterizes the concept goal for software
development risk management. The goal details precisely specifies the objectives,
expectations and constraints of the development components through several at-
tributes, as shown in Figure 5.8

• Name: A unique reference name given to each goal, which is used through-
out the risk management.

• Description: A short overview of the goal in terms of how it contributes to
the software development project and maps to the project success indicators.

• Category: This attribute classifies the goal as functional and non-functional
category and based on the hierarchy of the development component. Ad-
ditionally, it also includes the specific goal types (i.e., behavioural, soft) to
provide more precise meaning.

• Source: This attribute denotes the source of the goal origination. The goals
may originate from several sources including project stakeholders, initial
project artifacts, preliminary company document and so on.

75

www.manaraa.com

5.3 GSRM activities

• Sub-goals: The sub-goals which are associated with the main goal and their
refinement type either AND or OR.

• Priority: If required, goals are prioritized, as they are the most critical ones
for the successful project. The priority should qualitatively rank goals as very
important, important and less important.

Artifact: Goal model The goal model is also constructed by this activity. It is
mainly the refinement of the higher goal to the sub-goals through the refinement
link. This visual representation allows to represent and understand the goals for
risk management.

5.3.3 Activity 3: Identify & Model Obstacles

This activity identifies a list of risk factors that obstruct the identified goals and
models them as goal obstruction links. Similar to the goal definition, we follow
the development component-element-factor hierarchy to identify and categorize
the risk factors. This activity contains two different tasks and details of individual
task is given below.

5.3.3.1 Identify & Categorize the Risk Factor

The main obstacles from the early development environment that obstruct the
goals and incur problems during and after development are identified and catego-
rized by this task. We need to identify as many likely obstacles as possible so that
development team is aware of the problems from the early stage. There are two
main desirable properties that an obstacle should comply with: completeness and
consistency. Completeness specifies whether the identified obstacles are sufficient
to obstruct a specific goal. This property allows to consider all possible ways by
which the goals can be obstructed. Consistency specifies whether any conflict exist
among the identified obstacles or not. Same obstacle should not be represented by
different name. Thus, obstacle completeness and consistency generally depends
upon adequate domain knowledge of the software risk and project context. To
support these two properties, we need to categorize all identified obstacles by fol-
lowing the component-element-factor hierarchy. There are several categories of
obstacles that obstruct the goals to the software development project. And obsta-
cle category should be influenced by the goal category. E.g. if satisfaction supports
a goal then dissatisfaction considers the issues that oppose the goal satisfaction.
The identified risks can be large and can represent similar risk factors from the
different perspectives. It is essential to categorize the risk factors. We follow our
classification of the development component-element-factor that is related to the
goals. There are several types of obstacles which facilitate to identify and catego-
rize the risk factors [vL09]. They are:

• Dissatisfaction: The obstacle that directly obstructs a goal to satisfy.
• Unavailable information: When necessary information about a particular

project context, i.e., business process details, interdependencies of the com-
ponents, is not available or not available on time, then the obstacle is defined
as unavailable information.

• Wrong information: The provided information is incorrect so that the corre-
sponding assumption is wrong.

• Incomplete information: The provided information is incomplete so that the
corresponding assumption is not completely up to date.

76

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

• Wrong belief: The required information of an artifact or the assumption
made for project management is different from what it actually should be.
Wrong belief can be caused by inability, wrong information and incomplete
information.

• Product quality obstacle: The obstacles that directly obstruct the product
quality such as security by threat, safety by hazard, privacy by harm, usabil-
ity by unusable and so on.

• Inability: An agent such as project stakeholders (i.e.practitioner, manage-
ment or user), tool and device is not able to perform certain task.

Several techniques are employed for the risk-obstacles identification. However
the focus is always on what can be happened for the goal negation or what can go
wrong during the life cycle of the product. Obstacle identification reviews project
documents such as system vision, project plan and management, goal details, re-
quirement specification, user and practitioners perspectives, user organization en-
vironment where the software will be deployed and other relevant documents.
Therefore the input elements for goal and risk identification are almost similar but
are analyzed from different perspectives. For instance, if the goal is to improve
some target property such as improve customer/user involvement then the focus is on
what might go wrong to depreciate the customer/user involvement. We follow
a questionnaire consisting of a set of closed questions, shown in appendix A, to
identify the initial set of obstacles. Our checklist was developed by investigating
the existing literature about risk identification [CKM+93, Kar95, LWE01, SLKC01],
risk factors impact on the software project [WK04, NI09] as well as from our empir-
ical investigation of software development risk management model. The questions
are comprehensive and arranged through component-element-factors hierarchy so
that one can systematically extracts the status of the development components and
links them to the goals. Besides the questionnaires based checklist, we have ob-
served during the case studies that brainstorming session with the development
team and project stakeholders is also effective for the obstacle identification. But
it consumes more time and some times is difficult to arrange in tight budget and
schedule pressure. Closed questions can introduce biasness to identify the actual
risk factors. Therefore, combining both of these techniques can effectively con-
tribute to the risk-obstacles identification , in particular, starting with the informal
ones, such as brainstorming and workshop and then continuing with the more for-
mal ones such as structure interview through a checklist. Once the risk factors are
identified then we focus on modeling the obstacles as goal negation.

5.3.3.2 Construct the Goal-risk Model

Goal-risk model is an extension of the goal model by including obstruction link
from obstacles to the goals. Similar to goal refinement, obstacles are also refined
through AND or OR refinement. The AND refinement shows how single or mul-
tiple sub-obstacles jointly satisfy the parent obstacle and OR refinement shows the
alternative ways from the sub-obstacles to satisfy the parent obstacle. Goal-risk
model includes the obstacle model that refines the risk factors to risk events. The
obstacle model requires identifying risk events from the risk factor so that risk fac-
tors are refined to risk events and the identified events also establish obstruction
link to the specific goals. The goal-risk model includes refinement of goals to sub-
goals and refinement of risk factors to risk events. It comprises two different links:
a contribution link from sub-goal to the goals and risk factors to risk events and a
obstruction link from risk factors and risk events to the goals. This allows specify-
ing the visual representation of the goals and risk factors. The model also shows

77

www.manaraa.com

5.3 GSRM activities

the critical sub-goals and risk factors which need more attention compared to the
others. And this information is critical at any stage of the development.
Software development risk factors are generally followed by OR refinement be-
cause it is difficult to claim or measure that all risk factors are jointly responsible for
the occurrence of a risk event. However the focus should be to ensure consistency
and completeness related to the refinement from the risk factor to the risk event so
that one should not skip any critical risk factor. Before constructing the goal-risk
model, this task identifies the risk events that are influenced by the identified risk
factors from the previous activity. To make the task simple, initial consideration
is the risk event which is common for every project such as budget overruns and
erroneous requirements and then followed by the project specific risk events. Once
all risk events are identified, then the goal-risk model can be constructed.

5.3.4 Activity 4: Assess Risk

This activity quantifies individual risk by estimating the risk level and priority.
We start with the causal relationship model by following the identified goals and
risk factors from the previous activities. This allows to focus on the relevant risk
events for the risk level estimation, rather than considering all raw risk factors.
Risk estimation prioritizes the risks so that appropriate treatment actions can be
planned and implemented. This activity provides a detailed description of the
software development risks w.r.t. the project context.

5.3.4.1 Estimate Risk

Each risk is estimated through two properties: likelihood and severity of im-
pact. However risk estimation is always challenging in software development
projects [Boe91]. As stated in Chapter 3, in software engineering domain historical
data hardly ever exists in adequate volume for statistically reliable assumption of
the risk event, we rely on the subjective probability to estimate the risk level. Prob-
ability becomes purely subjective when a true value does not exists [Hou07]. In
such a case, the focus is put on the observable values based on observation, indi-
vidual belief or by focusing on the states of the development components. Quan-
tifying uncertainty in an uncertainty analysis is always conditional. Estimating
unconditional uncertainty is always difficult [BC01, FN09]. However the risk fac-
tors values’ in software engineering domain are fuzzy and that makes it difficult
to aggregate these factors into a single instance. For instance, measuring of a risk
factor related to unauthorized system access differs from the risk factors related to
poor team performance. For an effective integration of risk management during
the development, it is necessary to have a simple and straight estimation process.
We use the Bayesian Belief Network (BBN) [Jen96] to estimate the risk by mod-
eling the uncertainties based on the risk factors values and causal relationship of
these risk factors with risk events. BBN is formulated on the Bayes formula which
eases to model the risk event uncertainty that conditionally depends upon the
risk factors. This allows to visualize the software development risk from cause to
control via consequence [FN08]. In software development risk assessment, uncer-
tainties involve a wide variety of factors and are surrounded by the development
component-element-factor hierarchy. We follow the goals and goal category to
elicit a risk event that conditionally depends on the risk factors. A risk factor may
influence to single or multiple risk events depending on the context. For instance,
inadequate practitioner domain knowledge, passive customer/user involvement,
ambiguity terms in requirements are the risk factors that influence for the occur-
rence of several related risk events like erroneous requirements, schedule-overruns

78

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

State of elements
& factors under

components

Risk details
Risk level

Casual
relationship

model

BBN Risk
treatment

Figure 5.9: Risk Estimation Using BBN

and poor product quality. Therefore causal relationship among the risk factors and
events eases to specify the conditional foundation of the critical risk factors at an
early development stage.

To estimate the risk we measure the likelihood of risk event occurrence and impact
of individual occurrence to the goals. Therefore the result of this task prioritizes
the risk so that adequate treatment actions can be identified and employed as early
as possible. Figure 5.9 depicts the employment of BBNs for the risk estimation.
BBNs develop a causal relationship model so that risk event likelihood is obtained
that helps to determine the impact to the goals. The activity consists of two steps:
assess risk event likelihood and quantify the risk event consequence.

Step 1 Assess Risk Event Likelihood We consider risk factor, risk event, con-
sequence and risk priority as variables so that they can be mapped with the BBN
nodes. The mapping is considered as follows: risk factor as a target node, risk
event and consequence as an observable node and risk priority as a decision node.
Risk factors are the main causes of any obstacle and controlling of these factors
is the initial concern of software development risk management. Risk event and
consequence consider as observable node as they are influenced by the identified
factors. Finally, the risk consequences prioritize the risk so that the appropriate
control actions can be undertaken to mitigate the risk. The nodes represent three
possible values from the individual belief or from the response of the closed ques-
tions. In BBN, arcs represent the cause-effect relationship among the nodes and
support to construct the causal relationship model from the target and intermedi-
ate node to the observable or decision node. Depending on the context, the causal
relationship can be serial, diverging and converging. If a parent or an intermedi-
ate node diverges to several observable nodes then the factor which belongs to the
node must get higher priority. On the other hand, when several nodes converge
to a single node then the converged nodes are observable or decision node. A de-
cision node responsible to prioritize the risk is concerned with the consequence of
the risk event to the goals.

Figure 5.10 shows the mapping of risk factor, event and priority with the BBN’s
node. However as stated previously, obtaining risk factors and events values is
challenging ,in particular, at the early development stage. Some of the variables
are unconditionally independent from other nodes value while others are condi-
tionally dependent upon the other node values. Experts’ belief or practitioners’
perceptions are important to express the dependencies of the variables for esti-

79

www.manaraa.com

5.3 GSRM activities

mating the joint probability. Bayesian probability theory allows one to model the
dependencies of the uncertainties and foresees their outcomes of interest by com-
bining common-sense knowledge and observation evidence.

Observable
node

casual relation

Risk factor
Target
node

Risk event

Risk factor

Risk event
act as factor

Risk priority
decision

node

Intermediate
node

Figure 5.10: Mapping Risk Elements to BBN Nodes

Consider, risk event E occurs under the assumption that risk factor F1 is respon-
sible for the occurrence of the event. The probability P of the risk event E that
depends on risk factor F1, can be derived as

P (E|F1) = P (E,F1)÷ P (F1)
The true Bayesian actually considers conditional probability as more basic than
joint probability. The conditional probability can be rearranged as
P (E|F1)P (F1) = P (E,F1)
Symmetrically it can be rearranged as
P (F1|E)P (E) = P (E,F1)
Therefore it follows that
P (E|F1) = P (F1|E)P (E)÷ P (F1)
This formula is widely known as Bayes rule [Jen96, Vos00]. It is also possible to
derive the risk event probability from single or multiple risk factors, i.e., F1 or
F1orF1, F2....., Fn by using the Bayes rule.

We follow the Triangular distribution for assigning the node values, i.e., low,
medium and high. The probability distribution of the risk event likelihood is
discrete. To determine a risk factors value, we consider the closed questions re-
sponses. The questionnaire is arranged into three different scales that are gener-
ally used to obtain the project participants’ perception about the risk obstacles w.r.t.
project context. Once the risk factor values are identified, BBN assists to estimate
the risk event likelihood by following the causal relationship from the relevant risk
factors to risk event. However, if an event does not contain any causal relationship
with the factors then likelihood estimation is simpler compared to an event which
is causally linked with several factors. We consider HUGIN tool [Lit] to support
the basic computation of BBN for n number of risk factors. The risk event likeli-
hood is estimated within the range [0.0-1.0], with three different scales; maximum

80

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Component Risk event Risk factors

Budget overruns Unrealistic cost estimation, hidden factors, schedule overruns,
operational and maintenance difficulties, highly complex
project, unclear scope, high risky project.

Schedule overruns

Inaccurate schedule estimation, unclear milestones, project
complexity, erroneous requirements , unclear system vision,
inadequate activity, incompetence practitioner, user lack of
cooperation, numerous change, unclear scope, rework of
deliverables.

Project execution

Project complexity

High level technical complexity, complex tasks and
dependencies with among system components, new and
unknown technology, high level innovation, immature
technology, long duration, unrealistic expectations.

Process Inadequate development
activity

Inadequate tasks and methods, complex process, unclear roles
and responsibilities within the process, untrained practitioner,
not followed or partially followed in the project,
inconsistency among the artifacts.

Erroneous requirements

Unclear goals, requirement faults i.e., ambiguous, incorrect,
unstable, incomplete, immeasurable, over specified, not
prioritized and traceable requirements, documentation error,
lack of knowledge, inadequate time and budget for RE,
passive user involvement, practitioners lack of knowledge,
unclear scope.

Poor quality Unclear scope and quality goals, erroneous requirements,
lately considering quality issues, missing user expectations,
lack of analysis of project domain specific quality properties.

Product

Operational dilemma Inadequate user and technical manual, unsatisfactory training,
lack of training budget, lack of user motivation, incomplete or
incorrect data conversion, not harmonized transition plan,
incomplete operation specification.

Poor team performance Frequent conflicts, negative team attitude, lack of motivation,
unbalanced team, lack of coordination, unclear roles &
responsibilities, incompetence staff

Passive user involvement Wrong user representative, inadequate domain knowledge,
lack of motivation for the new system, lack of IT competence,
poor feedback.

Human

Incompetence staff

Lack of domain knowledge, unskilled/ untrained staff,
inexperience project manager, lack of management support,
lack of motivation and productivity.

Environment Unstable organization

Unstructured organization, management lack of support,
inefficient decision making capability, not willing to provide
additional budget, political bias, inadequate policies and
process.

Figure 5.11: List of Risk Events and Associated Factors

(≥ 0.7), most likely (≥ 0.3) , and improbable (≥ 0.0). The value 0.0 means that the
risk event will never be exploited and the value 1.0 means that the event is certain
to occur.
To make the whole estimation process simpler, we advocate to initially consider
the generic but important risk events of any software development project. The
identified risk factors are then used to establish the causal relationship with these
risk events so that risk event likelihood can be calculated. An extensive literature
review has been performed to gain more insight into the factors which is responsi-
ble for the risk event [Lin99, LWE01, RL00, SLKC01, PVOD02, WK04]. We summa-
rized eleven risk events and associated factors, shown in Figure 5.11, by following
our literature investigation result. However this summary only provides a guide-
line for this task and in particular, helps to formulate the risk factors and associated
events from the the project participants’ observation.

Step 2 Assess Risk Event Impact Once the risk event likelihood is obtained,
then the next step is to estimate the impact of individual events to the goals. The

81

www.manaraa.com

5.3 GSRM activities

risk factor
(cause)

risk event goal

risk factor
(cause)

risk factor
(cause)

risk priority

casual
realtionship

impact

influence influence

sub-goal

sub-goal

Figure 5.12: Software Development Risk Causes and Consequence Relationship

impact assessment builds the cause-consequence relationship from the risk event
to the obstructed goals. We follow the same measurement scale for estimating the
impact as used in likelihood estimation, i.e., high, medium and low. It simplifies
the whole risk assessment task and makes it effective in software project to prior-
itize the risk. Figure 5.12 shows the cause-consequence relationship of risk factor
and events to the goals and to determine the risk priority.

The impact assessment step, similar to risk event likelihood estimation, is non-
trivial ,in particular, when it comes to quantify the risk event consequence. Project
context certainly plays an important role for this step. For instance, a project em-
phasizing goals related to cost and schedule will have different impact compared
to a project emphasizing knowledge gathering, user satisfaction, scope or qual-
ity. The prioritized goals from the previous activity also supports this task. In
the simplest case, initially two outcomes are considered: true and false, by spec-
ifying whether the event has negative impact on the goals or not. If yes, then
we need to calculate the impact to quantify its severity. However, GSRM con-
siders the risks that have mainly negative consequence to the goals, i.e., goals re-
lated to the project success. Therefore, once the risk event likelihood is above its
threshold level, then the step focuses on calculating the risk event impact. In the
literature, several contributions outline the software risk effect on the project out-
come [FHK+01, WK04, IJH09]. We analyzed the literature and came up with the
common understanding about the risk event impact to several goals which are rel-
evant for a project. We consider a rule of thumb consisting of 4 rules to support the
impact estimation. They are as follows:

• Rule 1 Initially, the analysis considers the obstruction link from the risk event
to the goals. For instance, the important goals for any project context are:
maintain estimated budget and schedule, reduce erroneous requirements,
improve product quality, effective development activities, staff competency,
active user participation and effective communication. However the focus
should also be on the project specific goals and associated sub-goals that were
already identified. Once the risk events are linked to the goals, we need to
consider the most influential risk factors associated with more than one risk
events. The goal-risk model allows understanding the mapping and associ-
ated dependencies of goals and obstacles. If a risk event obstructs a specific
goal and factors associated to the event obstruct sub-goals, then the obstruc-

82

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Event Goal
 Budget Schedule Requ. Quality Activities StaffCom. Eff. Comm
Budget Overruns High High Medium Medium Medium/

Low
Medium
/Low

Low

Schedule Overruns High High Medium Medium Medium Low Low
Project Complexity High High High High Medium/

Low
---- ----

Inadequate Activity Medium Medium Medium Medium High Low Medium
Erroneous Req. High High High High ---- ---- ----
Poor Quality High High ---- High ---- ---- ----
Poor Team Performance Medium Medium Medium Medium ----- ---- High
Passive Customer/User
Involvement

Low Low High Medium Medium ---- High

Inappropriate And
Incompetence Staff

High High High High Medium High Medium

Unstable Organisation Low Low Medium Medium Low Medium Medium

Figure 5.13: Software Development Risk Event Impact Assumptions to Goals

tion is complete. For a complete obstruction, the risk event likelihood and
threshold values (if available) are considered by this rule to estimate the im-
pact. If the risk event likelihood goes beyond the threshold limit, then the im-
pact is between medium and high. In many cases high risk event likelihood
is a common phenomenon. For instance, schedule overruns is a common
problem in software project and the stakeholders must agree on how much
the overruns in terms of duration the project will sustain. If schedule over-
runs exceed the agreed limit then certainly the risk impact is high. As stated
previously, risk factors are related with each other and the same risk event
can be treated as factor for another risk event. Therefore, a risk event with
high impact to a specific goal does not imply similar impact to another goal.
We need to calculate separately risk event impacts on several goals. Some-
times, risk event occurrence may have positive impact on a specific goal (e.g.,
personnel shortfall may reduce costs while delaying schedule). However the
model concerns with the risk events that have only negative consequence to
the goals.

• Rule 2 We consider a list of presumptions of events’ impact on the goals.
Some research results showed, that requirements errors and inappropriate
and incompetent staffs are the important risk events which severely impact
on the goals related to the budget, schedule and quality. Once the risk event
probability is obtained, these presumptions facilitate to specify the risk event
consequence to the goals negation. However there is no hard rule about
this assumption set, it rather acts as a guideline for the impact estimation in
particular when no other evidence exists at hand. Figure 5.13 outlines the list
of the presumptions about the risk event impacts on the goals.

• Rule 3 Several important development factors may be, at least partially,
beyond the control of a project manager, such as customer/user involve-
ment, issues on project complexity, hidden factors for cost and schedule over-
runs, inadequate customer/user knowledge, inherent factors for a high risk
project, difficulties to deploy the system in the user’s premises, operational
and maintenance problems and management commitment. We believe these
factors impact more on the goals compared to the factors which are under the
project manager control such as practitioners skill and development process.
Therefore, a risk event that is strongly influenced by these risk factors has
higher negative impact on the goals.

• Rule 4 The expert opinions are always useful in addition to the stated im-
pact estimation rules. Nevertheless, experts are not always available during
the software development project. Project manager or other development

83

www.manaraa.com

5.3 GSRM activities

team members with adequate experience generally contribute within this
context. Individual perception always alleviates the impact estimation but
the perception needs to be correctly match with the reality. For example, if
risk event consequence is considered higher than the actual value, then there
may be a chance to overspend the time and money on mitigating the risk and
vice versa [Sch08]. Underestimation or overestimation of each aspect of the
potential factors can bring on the wrong evaluation for the trade off [ID08].
People, by nature, prefer risks that they know or concern individually. Some-
times they pay too much attention to the new and unfamiliar risks and less
attention to the common, anonymous and less discussed risk. The risks from
some controlled and trusty external sources are generally underestimated.
Therefore it should always be taken care of when only expert judgments are
used for the impact estimation.

Once the risk events likelihood and impact are obtained, the next task is to priori-
tize the risks. Thus risk assessment layer finally prioritizes the risks based on the
risk event likelihood and their impact to goal dissatisfaction.

5.3.4.2 Prioritize Risk

Risk prioritization identifies the risks that require immediate attention. Some-
times it is not feasible to look at all the identified risks due to budget, schedule
or other constraints. Therefore this final task of the risk assessment activity prior-
itizes the most important software development risks w.r.t. project context. The
risk prioritization also considers the same measurement level as used in risk like-
lihood and impact estimation, i.e., very important, important and less important.
We use the risk prioritization matrix by considering the event likelihood and im-
pact values. Traditionally in software development, risk prioritization dimension
is based on likelihood and impact values, by having a combination of high-highs
attract the most attention to rank the risks and immediate select the control ac-
tion [Ban08]. The prioritization then focuses on the medium-mediums combination
while low-lows might be ignored. However there are other two combinations: high-
lows and low-highs. Risks having low likelihood but high impact are commonly
known as extreme events. Extreme events are difficult to handle ,in particular, at
an early stage of the development. A risk event with high likelihood and low im-
pact also requires attention so that treatment actions contribute for the likelihood
value reduction. High prioritized risks, i.e., top-ten or top-twenty risks, attract the
project manager to select immediate control actions. Table 5.1 shows the risk pri-
ority matrix based on risk event likelihood and impact. It can be high/medium
(H/M) in case of likelihood and impact combinations high-medium and medium-
high or can be medium/low (M/L) in case of the combinations medium-low and
low-medium. Otherwise, priority is high, low or extreme. Several risks can have
the same priority and that makes the same rank value for more than one risk.

Table 5.1: Risk Prioritization Matrix

Event likelihood Impact
high medium low

High H H/M Extreme
Medium H/M M M/L
Low Extreme M/L L

84

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

<<concept type>>
Risk details

- Name
- Risk factors
- Description
- Category
- Goals
- Likelihood of occurence
- Impact
- Risk level

Figure 5.14: Attributes for the Risk Details Concept

Artifact: Risk details At the end of the risk assessment activity, the risk details
artifact is compiled. This artifact document details about the concept of software
risk. The work product is based on the two activities, i.e., identify and model ob-
stacles and assess risks. It represents the details about the obstacle concept related
to the software development project. Several attributes are used to specify the risk
details, as shown in Figure 5.14. The attributes are:

• Name: A unique reference name of the risk event that provides precise spec-
ification of the obstacle which is used throughout the risk management.

• Risk Factors: Risk factors are the causes of the risk event. This attribute
contains the list of risk factors that are causally linked to the risk event.

• Description: A brief description of the risk event,in particular, how risk fac-
tors from the development component influence the risk event occurrence
and consequence to the goal negation.

• Category: The risk should also be categorized based on the development
components and by following the obstacle’s category such as dissatisfaction,
unavailable information, inability, wrong belief and product quality obstacle.

• Goals: The single or multiple goals and associated sub-goals that are ob-
structed by the risk event.

• Likelihood of occurrence: Result of the risk event likelihood estimation is
represented by one of the three estimation values: maximum, most likely
and improbable.

• Impact to the Goals: Result of the risk impact estimation is represented by
one of the three estimation values: high, medium and low.

• Risk level: It is the priority represented by one of the three values: very
important, important and less important.

5.3.5 Activity 5: Treat & Monitor Risk

This is the final activity of GSRM. It controls the risk as early as possible and mon-
itors the effectiveness of control actions. It also identifies any new risk at later
phases of the project. This activity identifies the potential possible countermea-
sures and selects the most appropriate ones to mitigate the risk. It is a continuous
activity during the development and consists of three tasks.

85

www.manaraa.com

5.3 GSRM activities

Risk
treatment
strategy

prevention

no-control
action

avoidance

Eliminate (factor value,event
likelihood, and impact)

Risk acceptance, alternative
option(method,tool, new goal),

review & monitor

reduction

No immediate action, review &
monitor, gather more

information

Eliminate (factor value,event
likelihood, and impact)

retain Keep the risk

Figure 5.15: Risk Control Strategy

5.3.5.1 Plan Risk Treatment

The task mainly determines the possible control actions which are relevant to con-
trol the risk event and selects the most appropriate ones so that the control action
can be immediately implemented. It consists of two main steps: identify the possi-
ble risk controlling actions and select the most potential ones. The steps under this
task are linked with each other. The selection of the suitable control actions mostly
depends on the identified possible countermeasures and overall risk control strat-
egy. Therefore, the first step should be adequate and accurate so that appropriate
control action can be selected.

Step 1 Identify possible Countermeasures Once the risks are prioritized, the
initial focus is on the high and medium prioritized risks, such as top-ten or top-
twenty risks, for identifying possible countermeasures. We propose to synthesize
this step with the high level risk control taxonomy [Boe91, Cha99]. Figure 5.15
shows the strategies of the risk control taxonomy facilitates to identify the possi-
ble control actions for the software risk. The identified countermeasures on one
hand obstruct the obstacles and on the other hand contribute to fulfill goals. How-
ever the countermeasures should be consistent and should have the ability to ad-
equately control the risk. It is a bottom up reasoning from the responsible agents
to implement the control actions and to trace the obstacle and goal. We provide
details on how the strategies support identification of the countermeasures:

• Risk avoidance Risk avoidance considers other alternative options, in order
to control the risk and the associated factors, so that negative consequences

86

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

of the risk event to the goals can be avoided. For instance, review a specific
development task or method, substitute a practitioner responsible for a spe-
cific task, revise goals, change of tools and so on. These alternative options
contain some characteristics that contribute to avoid the causes of the risk
event. Risk avoidance also considers the amendment of a specific goal if the
goal is expensive or unrealistic in the project context.

• No control action This option is preferred in several situations such as if
adequate information is not available at early stage or getting information is
expensive or risk priority is medium or mostly low. It implies, that there is no
immediate control action available to reduce the risk. The strategy expects
more information during the course of the project and explicitly monitors the
risk as no control action is immediately taken.

• Risk prevention This strategy prevents the risk by eliminating the likelihood
of risk event occurrence or by eliminating the influential consequences to the
goals. Nevertheless, pragmatically there is no guarantee that specific coun-
termeasures are capable to completely eliminate the risk and its associated
consequences. But theoretically, control actions under the risk prevention fo-
cus on removing the risks entirely from the development environment. One
way to achieve this is to introduce a new goal to prevent the specific obsta-
cle. For instance, increase budget or include an external consultant to the
development.

• Risk reduction As stated, complete obstacle elimination is not always pos-
sible therefore risk reduction is an alternative option to minimize the risk
to a desirable level. Risk reduction focuses on lessening the likelihood of
risk event occurrence or impact of the occurrence to the goals. It implies
to focus on the relevant risk factors and to reduce those, so that the asso-
ciated event’s likelihood or consequence can reduce. One possible way for
this strategy is to allocate extra support to the development such as include
more competent staff for a specific development module, increase active cus-
tomer/user involvement, emphasize on competence user training, allocate
backup schedule or improve the existing development process such as im-
prove the activities and tasks or introduce and intensify the tool support for
the development and communication or improve training facilities. Alterna-
tively, risks can be transferred to the project stakeholders. E.g., sharing the
risk with the customers such as product operational dilemma can be shared
with customer. It implies provisional approval of some risks by the customer
or project owner. But before the approval, the details of the selected risks
need to be clearly communicated with the stakeholders ,in particular, when
there is no realistic solution based on the project context. However trans-
ferring risk at early stage of the development components is not generally
recommended.

• Risk retain If any of the above strategies is not suitable for a risk then the
risk can retain as the last alternative. It is used when there is no capabil-
ity exists to control the risk factors. Nevertheless, this situation is rare at an
early development state. Our case study results showed, that project man-
agers are mainly concerned at this stage preventing the risk by selecting the
appropriate control actions.

These strategies guide the selection of the possible countermeasures. However,
these strategies are not supposed to define an optimal list of countermeasures. It
always requires intensive discussion among the main project participants to select
the appropriate ones.

87

www.manaraa.com

5.3 GSRM activities

Step 2 Select the most potential Countermeasures We need to select the most
potential control action, once the suitable countermeasures are identified for the
risk treatment. Every treatment action requires evaluating the schedule, cost, agent
availability, project goals, riskiness nature and risk management scope for its im-
plementation. We define those as evaluation criteria for selecting the control ac-
tion. A project always has to trade-offs among the goals to select the appropriate
countermeasure. However, this trade-off also depends on the goals the project
emphasizes on. If the goal is only economic benefit then control actions related
to budget overruns would get the highest priority or if the project concerns more
on customer satisfaction for future business gain then control action would focus
more on the user satisfaction. The previous step stated several strategies for iden-
tifying the possible countermeasures. This step selects the most suitable ones from
the identified countermeasures which satisfy the risk management scope. It is of-
ten desirable to have an adequate possible countermeasure so that selected control
action would be complete. Generally, the initial focus can be to reconsider the
risks such that no unnecessary treatment action is assigned and implemented. The
potential treatment strategies in terms of prevention, reduction, avoidance, trans-
ferring and accepting should come after that.

We consider the factors review technique to select the most potential treatment action.
It is based on examining the underlying risk factors as the main causes for the oc-
currence of the risk event. This technique simply reviews whether the selected
single or multiple countermeasures are able or not to eliminate or reduce the risk
factors and are able or not to improve the situation caused by the risk factors. It
also calculates the number of obstacles resolved by a specific countermeasure. As
previously stated, some risk factors are more potential compared to others and
have the chance to influence multiple risk events. These factors require special
attention in terms of their reduction or complete elimination. This technique also
reviews whether the countermeasures are adequate to satisfy the goals. In partic-
ular, the selected control actions should be realistic based on the project context in
terms of cost and agent availability.

5.3.5.2 Assign Agent Responsibility

Agents are the active components within the software development that perform
specific role for the goal satisfaction. Risk treatment actions generate single or
multiple tasks and agents are responsible to perform the tasks so that the con-
trol actions are implemented. This task identifies the agents, allocates resource, if
necessary, assigns the responsibility to implement the control actions. GSRM mod-
els the agents and associated responsibilities, capabilities and dependencies with
other agents which contribute to the goal satisfaction. The main responsibilities of
the agent are to control the risk as early as possible and to monitor the status of
the risks throughout the development. A responsibility link is constructed from
control action to the agent. In GSRM, we consider different categories of agents.
They are:

• Human agent. Practitioners, i.e., project manager, risk manager, require-
ment engineering, management and customer/user, are the human agents
that take part during the development. The human agents mainly play a
specific role directly or indirectly throughout the life cycle of the product.

• Technical agent. It includes both hardware agents such as devices, com-
munication media, network infrastructure and software agents such as tools
and languages required during the development, use and maintenance of the
software.

88

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

• Development, operation and maintenance agent. It includes activities,
tasks, artifacts, policies and management related to the software develop-
ment, operation and maintenance.

To support the capabilities and responsibilities, agents should perform certain op-
erations. In particular, human agents monitor the threshold condition of the soft-
ware development risks once the control actions are implemented. An agent is
responsible for a goal satisfaction by preforming certain operations. In software
development risk management, humans are the main agents for the implementa-
tion of the risk control actions and play central role to interact with other agents.
Agents interact with each other for the successful risk management. A responsi-
bility link exists from the control action to the agent to specify the responsibility of
the agent for the risk mitigation and goal satisfaction.

5.3.5.3 Monitor Risk throughout Development

The risks in general evolve over time, during the course of development, use and
maintenance of the product. Furthermore, new risks can also emerge. A contin-
uous monitoring is essential and effective for analyzing the changes of risks in
the software project. This activity is initiated, once the identified risks are ana-
lyzed and selected control actions are implemented. It is a continuous task that
monitors the status of the identified risks and control actions at a regular interval.
Frequent interval for the risk monitor is not always possible for the projects with
tight schedule and budget pressure. Risk monitoring also depends on the level
of overall project risk. For instance, a high risk project risk monitor needs to be
more frequent and intensive. The interval can be agreed on during the risk man-
agement plan with the project stakeholders or based on the risk status result. This
task also updates the risk status report by providing actual status of risks and con-
trol actions. The updated risk status aids in decision making about whether the
implemented actions adequately mitigate the risk and how to control the newly
identified risks. The task focuses on the individual risk threshold values and crit-
ical factors of high risk project and provides accurate information about the pri-
oritized risks. It also updates any special remark about the risks to the risk status
report artifact.

Artifact: Risk status report This artifact documents the risk state after imple-
menting the risk control actions. The risk status report provides accurate informa-
tion about the software development risk. It helps to communicate the risk infor-
mation to the stakeholders so that in-time decisions about the risk can be taken.
This artifact, as shown in Figure 5.16, allows a condense view about the risk state.
The attributes are:

• Risk name: Risk name of the risk details artifact.

• Risk priority: Risk priority of the risk details artifact.

• Potential countermeasures: The identified possible countermeasures based
on the risk control strategy.

• Selected countermeasures: The selected potential single or multiple coun-
termeasures.

• Responsible agent: The assigned agent responsible to implement the control
action.

• Time frame: Agreed scheduled time with the assigned agent in order to im-
plement the selected control action.

89

www.manaraa.com

5.3 GSRM activities

<<concept type>>
Risk status report

- Risk Name
- Risk Priority
- Potential Countermeasures
- Selected Countermeasures
- Responsible Agent
- Time Frame
- Action Status
- Risk Status
- Remarks

Figure 5.16: Attributes of the Risk Status Report Concept

• Action status: Specifies the status of the selected control actions. The at-
tribute has two possible values: initiate and plan.

• Risk status: Current position of the risk, once the control action is imple-
mented. The attribute has three possible values: control, prevent and avoid.

• Remark: Any special remark about the risk observed by the treat and moni-
tor risk activity.

5.3.6 Artifact Type: Risk Specification

We introduce the artifact type risk specification that jointly represents the concepts
related to software development risk management. The risk specification reflects
the essential needs for managing risks from early stage through deployment to
the maintenance of software. The activities of the GSRM in the previous section,
subsequently describe the underlying concepts, dependencies among the concepts
and corresponding syntax of the risk specification. The artifact type contains con-
tent items such as goal, obstacle and treatment and concepts such as goal details, risk
details, risk status report, goal-risk model, causal relationship model and depen-
dencies of the concept. Any concept under the risk specification relies on attributes
or properties to define the content of the artifacts. The content and concept allows
to distinguish the artifacts’ structure and artifacts’ underlying concepts [Sch]. Fig-
ure 5.17 depicts the content items and encompasses concepts for the risk specifi-
cation. The attributes of an artifact support relationships to and dependencies on
other attributes of another artifact. For instance, selected risk countermeasure of
the concept risk status report certainly relies on the risk priority. The concept also
requires syntax that defines a concrete language or representation of an artifact. A
clear and precise representation is essential to communicate the risk information
with the project stakeholders. Highly structured texts in natural language that are
arranged in tabular structure, by following the attributes of the individual artifact,
are mainly used to represent the concept types. However the models are mainly
represented through the graphical representation, for instance GSRM uses goal,
obstacle, agent, and task notation from KAOS to construct the goal-risk model. It
also follows the BBN to construct the causal relationship model.

90

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

<<concept type>>
Goal details

- Name
- Description
- Category
- Source
- Sub-goals
- Priority

<<concept type>>
Risk management plan

- Scope
- Source
- Process
- Risk acceptance
- Schedule constraint
- Responsibility and authority

<<concept type>>
Risk details

- Name
- Risk factors
- Description
- Category
- Goal
- Likelihood of occurence
- Impact

<<concept type>>
Risk status report

- Risk Name
- Risk Priority
- Potential Countermeasures
- Selected Countermeasures
- Responsible Agent
- Time Frame
- Action Status
- Risk Status
- Remarks

1...*1...*

1...*

1...*

0...* 0...*

Content item: goal & obstacle

Goal-risk model

Causal relationship model

Content item: treatment

Artefact type: risk specification

Figure 5.17: Overview of the Risk Specification

5.4 Roles & Responsibilities

GSRM introduces systematic risk management activities explicitly during the re-
quirements engineering phase. The approach requires a clear definition of roles
and responsibilities for performing the activities under the process model. Gen-
erally, a role takes the responsibility to perform a specific set of activities within
the process in order to produce and modify the related artifacts [BWHW05, Fir].
However, there are also roles that indirectly participate within the GSRM process
and contribute to or depend on the completion of an artifact, but they have no re-
sponsibility for this artifact such as management representative and development
team members for our case. The primary role of GSRM is Risk Manager.

91

www.manaraa.com

5.4 Roles & Responsibilities

Risk Manager. The risk manager is the key role for the entire course of the goal-
driven software development risk management process. In general, he has the
main responsibilities on the creation and maintenance of the risk specification ar-
tifact and communicates the risk information with the management, practitioners
and user. This role needs special responsibilities to generate precise and timely in-
formation about the risk during the early development. The risk manager should
further communicate this risk information to the key project members. We sum-
marize the following responsibilities for the risk manager

• Plan and implement risk management during the early stage of the project
and continue risk monitor throughout the life cycle of the product.

• Communicate the risk information to the project participants and stakehold-
ers.

• Perform risk management activities and lead collaboration with other partic-
ipants.

• Manage artifacts within the risk specification.
• Ensure the effectiveness of risk management process and collect feedback to

improve the overall process.
• Plan and train the development team about the software development risk

management.

There exist additional roles like project manager that directly support the risk man-
agement activities. Generally, in software project, roles are differentiated and as-
signed to the team members, no matter what the project size is. But in small
projects, several roles may be performed by a single person. To give a brief
overview, further roles that directly or indirectly participate in the risk manage-
ment can be:

• Project Owner. The project owner, also known as project sponsor, controls
the resources and supervises the overall project progress and success. He acts
on behalf of the management representative and requires the understanding
of the importance about the software development risk management during
the project. Management support is important for the effective risk manage-
ment. In particular, project owner has the responsibility to take the initiative
concerning the risk management activities during the development.

• Project Manager. The project manager is responsible for the overall project
execution and makes the risk management occur in the project. Adequate
schedule allocation for the risk management activities, when and by whom
risk management will take place should be agreed among the management,
project manager and project participants. He allocates the training support
for the risk management among the project participants. In real situation for
a small and medium size project, sometimes the risk manager role cannot
be allocated to a dedicated person, due to resource constraints. In that case,
project manager performs this role in addition to his primary role. Therefore,
project manager should have adequate knowledge and experience for assess-
ing and managing software risks during the development. Even though if
the risk manager exists in the project, project manager also needs to actively
participate in the risk management activities.

• Project Participants. The project participants such as requirements engineer,
architect, designer, coder, QA/tester and release manager need to have a ba-
sic idea about the software risk management concept, so that they have com-
mon awareness about the risks and communicate the potential risk to other
team members. This makes an effective risk management practice during the
development. The participants also need to be familiar with the activities,

92

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

tasks and artifacts involved for the software development risk management.
Since GSRM focuses on the integration during requirements engineering, Re-
quirements Engineers ought to participate actively in the goal and risk model-
ing activities. Commonly the requirements engineer takes the responsibility
on the creation and maintenance of the artifact type requirements specifica-
tion. The integration of risk management into RE allows to specify the de-
pendencies between requirement and risk artifacts. Therefore it is effective,
if the requirements engineer is actively involved to the risk management ac-
tivities. This allows on one hand to maintain consistency among the artifacts
and on the other hand eases the integration of GSRM within requirements
engineering.

• Users. Similar to software development, operation and maintenance, users
support in risk management is also very effective. Risks in user premises
or user perspectives can only be resolved by the user, such as risks related
to requirements, product deployment, usage and maintenance. These risks
are not under the control of the project manager. It is always important to
inform the users about the updated status of risks and to involve them for
risk resolution.

5.5 Integration of GSRM into Requirements
Engineering

This section outlines the integration of software development risk management
within early stage and in particular GSRM during requirements engineering phase.
As stated previously, risk management helps to avoid problems, reworks and dis-
asters exist in software project for stimulate successful project outcomes. It should
be an inherent component of software project [Boe91] and needs to be considered
as early as possible. We advocate to consider it in early requirements engineer-
ing phase. However, requirements engineering and software risk management are
two different processes. The integration endeavor requires to consider the inter-
actions among the underlying activities, tasks, methods, roles and dependencies
among the artifacts that are involved between the two processes. To begin with,
we examine two different perspectives, i.e., artifact and process oriented view, that
allow to understand the rationale in terms of the integration. We consider sev-
eral integration points from the artifact and process oriented views. By Integra-
tion point, we mean anything that explicitly connects the requirements engineer-
ing and risk management, i.e., the criteria to integrate between two different pro-
cesses. For instance, artifact oriented view focuses on the dependencies among
the requirements engineering or risk artifact types, its content items and associ-
ated concepts [SPHP02, GBB+06, FK09]. The process oriented view also focuses
on the interaction and dependencies among activities, tasks, along with the roles
and responsibilities of requirements engineering and risk management [Fir, Fir06].
Figure 5.18 depicts the integration points between RE and risk management. This
section presents the details about the individual integration points.

5.5.1 Artifact Oriented View

Artifact oriented requirements engineering is a systematic methodology that describes
the problem space of the system-as-is as comprehensively as possible towards
complete, consistent, correct and rigid requirements specification documents [GBB+06].
It combines both structure and content of the artifacts, expressed by domain-
specific concept model [FK09, BFI+09]. It incorporates techniques and notions for

93

www.manaraa.com

5.5 Integration of GSRM into Requirements Engineering

Activity

Roles & res.

ProcessArtifacts

Artefact type

Content item Method

Concept

Figure 5.18: Integration Points for Requirements and Risk Management

producing the consistent and complete result of the artifact. The requirement arti-
fact represents prescriptive statements to be enforced solely by the software-to-be.
The artifact oriented requirements engineering focusing on the business informa-
tion system domain mainly covers two artifacts types: business specification and
requirements specification [FK09]. Within each artifact type, it contains structure,
underlying concept and content dependencies. The concepts correspond to syn-
tax regarding the possibilities for choosing the notation when the artifacts are con-
structed. Hence syntax specifies the concept through textual or graphical represen-
tation. The dependencies among the artifacts can be structured by decomposing a
single artifact into several content items without restricting a specific types. Thus
dependencies support completeness and consistency among the artifacts, which
are critical for the requirement and risk specification. The initial artifacts are, if
required, modified or refined, as a part of abstraction and further used by the tasks
involved in the later stage of the process. Concept is decomposed into several at-
tributes to specify the concept itself. These attributes are important to represent
the requirements because requirements without an attribute are neither control-
lable nor traceable. We provide a brief overview of the individual requirements
artifact types which is the fundamental component for artifact oriented require-
ments engineering.

The artifact type business specification formulates the goals, capabilities, restric-
tions and conditions that affect the business of a customer’s organization and
further information that describes the current and future state of the system. It
contains several content items, such as business vision, restrictions and business
capabilities [BAB09, FK09]. Every content item in turn consists of a single or mul-
tiple concepts. Every concept has its individual attributes supporting content de-
pendencies with other concept attributes. For instance, the content item business
vision and restrictions includes steering goals, which have to be achieved by the
execution of the business activities and further rules and constraints that have to be
preserved during that execution. A business constraint consists of attributes, such
as attributes ID, reference, description and areas of validity and a business goal
consists of attributes, such as attributes id and statement of intent. Artifact type re-
quirement specification consists of several content items including system vision,
information system requirements, integrational requirements and organizational
requirements [Wie03, Dav93, SS97]. The system integrational and organizational
requirements contain similar concept types which specify constraints of the overall
organizational environment where software-to-be will integrate. The requirement
concept in turn consists of attributes id, description, owner, stakeholder, source,
rationale, acceptance criteria, time constraint and priority [FK09]. Requirements
are the demanded properties and constraints of the information system-to-be or
the system-to-be-next and its surrounding operational and maintenance environ-

94

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

ments. For instance, system requirements exclusively demand specific properties
of the application, architecture and the technical environment. The content sys-
tem vision defines how one particular information system will reflect the needs of
the business, respectively business processes. It builds the core interface between
requirements and business specification. The highly structured natural language
text, in tabular or plain list format is mainly used to represent the attributes of
the business and requirement artifacts. UML models are commonly used for the
diagrammatic representation of use case, scenario, activity and data flow.

Similar to the requirement specification artifact, GSRM also provides, as stated
previously, the artifact type risk specification. The risk specification encompasses
content item such as goals, obstacles and treatment, which in turn consist of con-
cept types such as risk management plan, goals details, risks details and risk sta-
tus report through textual representation. The content also supports goal-risk and
causal relationship model through graphical representation. GSRM requires visual
representation to represent the goal-risk and causal relationship model. This pic-
torial representation is important to demonstrate the components of the software
development risk management model. We consider Microsoft Visio as tool support
to model the goals, risk factors and control actions and Hugen tool to model the
causal relationships. Figure 5.19 depicts an overview of the artifact types for busi-
ness, requirements and risk specification. We attempt to focus on the dependencies
among the artifacts, through goals and certain attributes of the requirement and
risk artifacts. This allows to support the integration of the risk management into
requirements engineering.

Business goals
& restrictions

Business
domains

Business vision

System vision

Business Specification

 Risk Specification

Risk management plan

Risk status report

Goals details

Goal-risk model

Business
roles & capability

Glossary

Requirements Specification

Causal relationship
model

system requirements

Organisational req.

Integrational req.

Glossary

Risks details

Figure 5.19: Overview on Artefact Types

5.5.1.1 Goal Dependency

Among the requirement and risk concepts, goals are one of the fundamental ones
for the requirement and risk specification to support the integration. Thus, goals

95

www.manaraa.com

5.5 Integration of GSRM into Requirements Engineering

provide the background foundation to elicit and analyze requirements and risks.
A business process or a requirement without a goal is perhaps a statement without
any value for the customer. Goals motivate the business activities and finally pro-
duce an expected business value. Goals are in several dimensions including busi-
ness, stakeholders’ expectations, constraints, system, project and the surrounding
environment of both the system-as-is and the system-to-be. In GSRM, goals are
also considered based on the development components from the perspective of
project success. For instance, project scope is an element of project execution and
success criteria is a critical factor of project scope. GSRM considers complete suc-
cess criteria as a desirable property, i.e., a goal of the project scope which is needed
to be satisfied. This goal also eases to specify the risk management scope. Typical
risk management goals such as maintain estimated budget throughout develop-
ment, adequate quality product, reduce product complexity and perfect deploy-
ment contribute for a successful software development project. Therefore goals
related to the requirement and risk management are dependent upon each other.
Obstacles are the negations of the goals and goal elaboration allows to identify and
analyze the obstacles associated with the software project. Hence, goal anchors the
risk management. Goal refinement supports reasoning and traceability manage-
ment of the elicited requirements from the initial input documents as well as from
the risk control action to the goal satisfaction and obstacle obstruction. Risk treat-
ment also introduces new goals in terms of reduction, prevention and avoidance of
the software development risk. Figure 5.20 outlines the goal dependency among
the requirement and risk artifacts. It states, that requirements, risk management
plan and goals for risk management are derived from the business goals, business
restrictions, project execution and other related artifacts. Thus, goals play a central
role in the initial part of system development.

5.5.1.2 Attributes Dependency

The elicited requirement artifacts, in particular, business, user and system require-
ments support to identify risk factors. In fact, requirements are among one of the
elementary inputs for the risk identification. Quality of the elicited requirements
is highly influenced to attain the project goals related to schedule, budget, product
quality and error free requirements. Reducing project risks is one of the critical re-
quirements of a software project. On the contrary, the purpose of requirements en-
gineering activities mainly desires a complete and robust requirement specification
document, where identified requirements should comply with certain qualities.
They are: correct, unambiguous, complete, consistent, verifiable, modifiable and
traceable according to the IEEE recommended practice for software requirements
specification, i.e., IEEE 830-1998 [IEE98]. Defects (i.e.,opposite to these quality
properties) of the elicited requirements pose requirement errors, which increase
the chance of any undesirable events in the project. Risk concepts contribute to
reduce errors from the elicited requirement. Attributes like risk level, priority,
control action and risk status help to reduce requirement errors. Commonly in
requirements engineering, the elicited requirements are prioritized. Higher pri-
ority requirements get immediate attention. Attributes like requirements accep-
tance, time constraint and design decision are also supported by the risk status re-
port. Requirement attributes, such as description of business service or constraints,
statement of the business goal, description, owner, source and rationale of the re-
quirements (i.e., system, integrational and organizational) are analyzed to identify
the goals and risk factors for the GSRM. The dependency between requirements
and risk artifacts is bi-directional: from requirements artifacts to risk artifacts and
vice versa. Figure 5.21 shows the interaction between requirement and risk artifact

96

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Business Goal

System Vision

Project Constraint

Development
Component

derive derive

influences

RM Plan

Goal

influences

influences

Risk

obstructs

Risks Treatment

obstructs

satisfies

influences

Requirement

Business
Restriction

0…* 0…*

0…*

0…*

1…*

0…*

0…*

0…*

1…*

1…*

0…*

0…*

Figure 5.20: Goal Dependencies of Requirements and Risk Artefacts

concept.

5.5.2 Process Oriented View

The activities, tasks and methods of the requirements engineering and risk man-
agement process are coherent and interrelated. Both the requirements engineering
and risk management processes consist of sequence of activities, tasks and steps in
order to construct the artifact concepts.
Requirements engineering is mainly comprised of eliciting, analyzing, validating
and managing activities, which further contain fine-grained tasks and sub-tasks
within these activities. These activities begin nearly in parallel to the activities of
business modeling and usually accompany the whole life cycle. Business mod-
eling mainly focuses on the specification of the business process of a customer’s
organization upon which in turn the requirement specification builds on. It is con-
cerned with the business specification artifact type that strongly supports the re-
quirement specification. In GSRM, goal based risk management process consists
of activities, tasks and steps to support the risk specification artifact type. The
activities of both requirements engineering and risk management are sequential
and the techniques used within the activities are partially similar. For instance,

97

www.manaraa.com

5.5 Integration of GSRM into Requirements Engineering

Business Goals

derive

0…*

- statement of intent

Business Restriction

- description

Requirement

- description
- owner
- source
- rationale
- state
- acceptance criteria
- time constraint
- priority

Risk Details

- name
- risk factor
- description
- category
- goal
- likelihood
- impact

Gisk Details

- name
- description
- category
- source
- sub-goals
- priority

Risk Status Report

- risk name
- risk priority
- potential countermeasure
- selected countermeasures
- responsible agent
- time frame
- action status
- risk status
- remarks

0…*

0…*

0…*

0…*

0…*

0…*
0…*

0…*

0…*

0…*

1…*

Business & Requirement Specification

Risk Specification

Figure 5.21: Attributes Dependency of Requirements and Risk Artifacts

requirement elicitation commonly relies on the background study of specific type
of artifacts, including pre-existing documents about the system as-is, such as or-
ganizational charts, policies, work procedure, business rules, data samples and
scenario analysis of the interaction among the systems [vL09]. The method also
focuses on the stakeholder-driven elicitation through structured and unstructured
interview and joint workshop. Goals and risks identification of the GSRM focus on
the preliminary analysis of the system-as-is, such as project information, project
domain analysis and requirement artifacts. The taxonomy based questionnaires
and brainstorming sessions with stakeholders are very effective techniques for the
risk identification [CKM+93, FHK+01]. Therefore the techniques used and the in-
put artifacts required for the goal, requirement and risk identification are similar
and very much dependent upon each other. The elicited initial requirements are in-
terpreted and refined into the specific expected level of detail, through the require-
ment analysis. Finally, requirements are validated to comply with the system-to-be
along with certain qualities. Risks are analyzed to estimate the risk level through
likelihood of occurrence and impact so that the confidence for goal satisfaction
can be obtained. Risk level prioritizes the risks that eases to plan, implement and
monitor the treatment actions. Outcome of risk analysis also influences prioritiz-
ing the requirements and design decisions that are traced with the requirements.

98

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

Create requirement specification Goal-based risk management

Organisational
document

Business
specification

Risks specificationRequirements
specification

Information about
project,

system-as-is

System-to-be
or

system-to-be-next

towards tow
ard

s

Elicit
requirements

Analyse
requirements

Validate
requirements

Manage
requirements

Initialise risk
management

Identify &
model risk-
obstacles

Identify &
model goals

Assess risk

Treat & monitor
risk

Figure 5.22: Activities of Requirement Engineering and Risk Management

Risk monitoring, similar to requirement validation and management, is a contin-
uous activity. Risk monitoring continues through out the project to identify any
new risk and to control the identified risk at an acceptable level. Both require-
ments engineering and risk management are iterative processes. Note that GSRM
focuses on risks not only from the requirements but also from the other develop-
ment components, from the holistic perspective. Figure 5.22 shows the activities
under requirements engineering and GSRM.

Roles Dependency The activities and tasks under the process couple to one or
more roles, which take the responsibilities for producing the related artifacts. A

99

www.manaraa.com

5.5 Integration of GSRM into Requirements Engineering

role directly or indirectly contributes to the development process, by perform-
ing some activities and takes the responsibility for a specific set of artifacts. A
clear definition of this role and a balanced assignment of responsibilities to the
project participants is critical for any kind of software project. Development pro-
cess would be ineffective, unless clear definitions and strong coordination among
the roles exist. Typical roles for the requirements engineering are customer/user
representative, business analyst and requirement engineer. Customer/user repre-
sentative ,in particular, members of user groups play an important role to elicit the
user requirements. Business analysts with particular domain knowledge related to
certain business domains such as the financial sector or insurance are responsible
for creating and maintaining the business specification. Requirement engineer is
the key responsible person, which creates and manages the requirement specifica-
tion by aligning the business needs to the software-to-be. He establishes the bridge
among business analyst, architect, project manager and customer/user. Risk man-
ager is mainly the responsible person for performing risk assessment and man-
agement activities. He should have adequate knowledge of the project domain
and sufficient skills to handle the risks, in specific project situations. For instance,
it may be totally acceptable, to accept a risk without considering any control ac-
tions due to limited budget constraint or there is no effective way to counter the
risks (i.e. meaning it is not worth the money to invest in treatment). Schedule
overruns is a common problem of a software project, depends on its estimated
threshold value before considering it as a risk. The risk manager needs adequate
experience to estimate the risk level and to select the appropriate countermeasures
to control the risk. There exist additional roles like project owner, project man-
ager and project participants (i.e., architect, quality manager). They also directly
or indirectly participate in the requirements engineering and risk management
process. For instance, a project owner participates as part of management, pro-
vides important decisions about allocation of the resources. The practitioner com-
monly participate during the requirement and risk elicitation activity. We have
observed through the case studies [Isl09, IHMFJ09], that a requirement engineer is
capable to contribute in risk management activities. In real project situation, for
small or medium size project, there may not be any risk manager due to budget
constraints [Isl09, IHMFJ09, IH10]. Project manager is concerned with the over-
all project execution and takes the additional role as risk manager. A successful
project manager is always a good risk manager [CH93]. The requirement engineer
active participation is more important within this context.
We conclude that requirements and risk artifacts depend upon each other. One
of the main focuses of the integration of risk management into requirements en-
gineering is to create and manage a error free, complete and robust requirement
specification document and to control the human and organizational issues related
to the project success. There are similar techniques used within requirements en-
gineering and risk management activities. GSRM is a goal-driven approach and
therefore eases the practical execution of risk assessment and treatment activities
within requirements engineering. Goal-driven approach the interdependency be-
tween the artifacts and activities of both processes.

5.5.3 Initiation of GSRM into Requirements Engineering

By the term initiation of GSRM into requirements engineering, we mean the start-
ing point of risk management. There is no strict rule, more specifically, it is hard
to define any fixed point when risk management starts during development. We
advocate to start the goal and risk identification activities of the GSRM nearly in
parallel to the requirement elicitation activity. This is because it is beneficial to

100

www.manaraa.com

5 Goal-driven Software Development Risk Management Model(GSRM)

carry out these activities as part of preparing artifacts such as business vision,
business goal and system vision for the customer approval. Goals and risks re-
lated to the business needs and project scope can be easily and effectively identi-
fied at this stage. Certain goals and risks related to project schedule and budget,
staffing, participant competency, customer/user involvement, development facili-
tates, tools support and project complexity can also be analyzed before the elicita-
tion of the business specification and system vision, i.e., prior to the requirements
elicitation. Focusing on these issues at early stage allows to capture non-technical
project risks up-front, factors related to the high risk projects even before any re-
quirements have been identified. The identified risks can quickly be countered and
later be refined, if it happens to be a persistent difficult problem to address. To ef-
fectively tackle risks at an early stage and to reduce errors or wrong requirements,
as stated previously, it is important to align the risk management plan with the
project scope, business and system vision. It is absolutely crucial to be concrete,
despite it being difficult. A concrete project scope and system vision can be used
to guide the communication and to consult, monitor and review the activities of
the risk management. As a minimum, the risk management plan should define
the scope for risk management, schedule and pre-conditions of the risk identifica-
tion, analysis and evaluation activities and align these with the requirements en-
gineering activities, such as requirements elicitation. GSRM is iterative and can be
used to guide the requirements elicitation, analysis and verification activities. The
framework is also flexible and can be tailored to the particular project, such that it
fits with the project scope, budget and development time frame. Further iterations
refine these initial goals and identify and refine associated risk artifacts by mainly
focusing on the elements under the product from the elicited user and system re-
quirements and other relevant artifacts. Risks are then analyzed and appropriate
control actions are applied to mitigate the risk and thereby attain the goals. This
activity circle (identify goals and risks, estimate likelihood and severity and assign
treatments) is then repeated until the level of project risks is acceptable, until the
project is stopped because of a too low potential success rate, or upon completion
of the project.

5.6 Conclusion of GSRM

GSRM combines the goal oriented approach with the software development risk
management to model, assess and manage software risks. The underlying process
to perform the goal based risk management model is documented in details by
this research. We use Microsoft Visio to construct the goal-risk model and Word
to create fixed templates of risk specification artifacts and Hugin tool to support
the causal relationship model. Our approach systematically introduces goal con-
cepts for risk management and integrates risk management activities into require-
ments engineering which makes it unique compared to the other works. We start
with the goal elaboration related to the project success and every identified goal
is shadowed by risks. Therefore, GSRM aligns the risk management process with
the project success goals based on the development components. We believe that
the goal definition eases risk reorganization and makes the whole process simple.
Risk perception enhances the goal clarity. The component-element-factor hierar-
chy allows us to identify and categorize the goals and software development risks
from a holistic perspective and assists to construct the goal-risk model.

101

www.manaraa.com

5.6 Conclusion of GSRM

102

www.manaraa.com

CHAPTER 6

Evaluation

Contents
6.1 Empirical Evaluation and Data Collection 103
6.2 Study 1: Goal and Risk Factors in Offshore Outsourced Soft-

ware Development . 107
6.3 Study 2: Integration of Risk Management Activities into Re-

quirements Engineering . 112
6.4 Study 3: Implementation and evaluation of a goal-driven risk

management model . 120
6.5 Goal-Risk Taxonomy . 135
6.6 Empirical Studies Conclusions 140

This chapter focuses on the evaluation of the proposed goal-driven risk manage-
ment model, in particular, assessing the strengths and weaknesses of the GSRM
and its integration into requirements engineering. Data is collected and analyzed
systematically through a survey and case studies. An informal reasoning is pro-
vided about the effectiveness, scalability and usability of the GSRM’s practical ap-
plicability. The evaluation focuses on the fulfillment of the research questions and
practical use of GSRM in the industrial context. Finally, a goal-risk taxonomy pro-
poses based the basic concepts of GSRM and the evaluation results.

6.1 Empirical Evaluation and Data Collection

We have chosen empirical approach to evaluate the main contributions of this
research. The demand of empirical studies and their contribution to increasing
knowledge in software engineering domain [RH09] is continuously increasing.
In software engineering domain, it is difficult to select an appropriate empirical
method which is suitable for a specific research context. Because the domain is a
multi dimensional discipline which consists of evolving technology, knowledge,
intensive human activities, complexities, numerous uncertainties and many other
social boundaries [ESSD07]. But the society critically depends on high quality soft-
ware which demands a systematic investigation of the concepts, methods, tech-
nologies and tools used to develop or use the software. Empirical study has well

103

www.manaraa.com

6.1 Empirical Evaluation and Data Collection

proven to be an effective research method to collect relevant data for investigat-
ing a specific issue of the software engineering domain [SDJ07]. We combine two
main classes of research methods for evaluating the proposed approach, i.e., sur-
vey and case study. Both of these techniques are widely used in software engi-
neering domain [PK01, KPP+02]. This allows to obtain data about the impact of
goal-driven risk management on a running project as well as practitioners’ per-
ception on GSRM. However, the method selection depends on parameters such as
availability of resources (i.e., availability of practitioner and other project stake-
holder), access to subjects (i.e., project document, customer business domain, risk
management information, users and their organizational information, practition-
ers information) and opportunity to control the variables of interest (i.e., risk con-
trol) [ESSD07]. Our studies confirm these parameters and provide a precise un-
derstanding of the evaluation part for this dissertation. We use qualitative data
through questionnaires, requirements errors checklist, interviews and brainstorm-
ing sessions with the project participants and analyze it in both qualitative and
quantitative ways to understand the study result.

Two different set of questionnaires, i.e., closed and open questions are used for
the data collection. The closed questions are concerned with the existency and fre-
quency of anticipation and foresight problems in a software project. These ques-
tions are arranged by following the component-element-factor hierarchy described
in section 4. The closed questions answers consist of three possible values which
ease to quantify the state of factor or element under a development component. On
the other hand, open questions are mainly descriptive and comparative questions.
These questions are mainly used to identify the participants’ perception about the
software risk management in particular about the usefulness and drawbacks of the
goal-driven risk management and its integration into requirements engineering. In
the beginning of the case studies, a kick-off workshop was carried out to provide
an overview of the GSRM, issues related to the risk specification artifact and its
integration into requirements engineering. Furthermore brainstorming sessions
were also carried out to identify and model goals and risk factors, risk assessment
and treatment and to observe the lessons learned.

The survey and first case study are mainly considered exploratory basis, as they
are used for the initial investigations of some key properties of the proposed soft-
ware development risk management model. A single case study would not justify
any conclusion. The final case study is mainly a confirmatory one, which further
evaluates the results obtained from the initial studies. Figure 6.1 shows how the
results of survey and case studies are related with each other and contribute to the
research conclusions. It also shows the context of the individual study. The case
study also supports action research because the project data is used as input for
GSRM and results from the GSRM employ to improve the overall project situa-
tion by controlling the identified risks. This method allows empirical investigation
within its real life context [Yin02].

6.1.1 Difficulties for Empirical Study in Software Development
Risk Management

Research results showed the barriers or challenges existing to implement the com-
plete risk management process into a software project. For instance, recent survey
study result showed that one of the main reasons why risk management is not
always applied concerns costs [OG09]. Practitioners do not perceive risk manage-
ment process seriously and they have commonly inadequate knowledge and expe-
rience to perform risk management activities [KS04, NKM08]. We have identified

104

www.manaraa.com

6 Evaluation

In
ve

st
ig

at
io

n
on

 G
S

R
M

Survey study
Reasonability of using
goal-driven approach for
risk management

investigate

Case study Feasibility of integrating risk
management activities into RE,
Usefulness of GSRM

Case study

investigate

generalize

findings

Research
conclusions

O
ffs

ho
re

 s
of

tw
ar

e
de

ve
lo

pm
en

t
In

sh
or

e
so

ftw
ar

e
de

ve
lo

pm
en

t

use

use

Figure 6.1: Empirical Study Methods and Contexts

some fundamental difficulties which pose the challenges for conducting empirical
study in software risk management domain. They are:

• Software development projects generally contain a long fixed duration of de-
velopment life cycle. Projects always pressure to put the focus on time, bud-
getary and quality control. A comprehensive risk management practice is
not always possible. Activities like risk identification and monitoring can be
more difficult, in particular, tracking risks across large projects throughout
the development. Furthermore, it is difficult to examine software develop-
ment risk management in an isolated setting within a running project. As a
consequence, there exist limited data points to validate the empirical study.

• Project managers and practitioners have lack of motivation to perform risk
management. They perceive risk management process and activities as ex-
tra work. Risks are the sensitive information of the software project. Lack
of practitioners motivation and involvement restrict to reduce the threats re-
lated to the validity and reliability of the empirical study result.

• Software risks are subjective by nature. Depending on the individual per-
ception, risk values can be overestimated or underestimated. Every project
is unique and evolves due to the change of project scope, market demand,
stakeholder expectations and technology. There can be too many risks in
various dimensions which make it impossible to control all factors. Risks
and its perceived values on past project may not be able to provide accurate
estimation in the running project. Lack of empirical data restricts to assess
the effectiveness of risk management method into the software development
project.

In literature, there exist several survey study results, which identify the risk factors
and their impact on project context by interviewing the experienced practitioners.
Only a few research focuses on the implementation of risk management method
into software development projects. Empirical study results about the effective-
ness of integrating risk management activities into the early development phase
are rare. Our study results can be compared with the risks or goals of other study

105

www.manaraa.com

6.1 Empirical Evaluation and Data Collection

results but in terms of evaluating effectiveness of the overall method, we rely on
the case studies results of this empirical study.

6.1.2 Study Constructs

We consider three constructs that are relevant for this context and provide the
scope of validity of the proposed approach. Construct definition is an impor-
tant part of any empirical study research, which presents a precise direction of the
study and associated measurement [SDJ07]. It provides a specific conceptual rep-
resentation about a phenomenon. Absence of study construct can lead to improper
conclusions about the context. Moreover, in software engineering domain, many
studies try to measure phenomenon which are poorly understood. This leads to
poor validity of the study result as well as overall quality of the study. However,
we try to make the construct narrow and specific, so that the studies systematically
analyze the construct and contribute to an unambiguous findings.
The main construct of this evaluation is to specify the impact of the goal-driven
risk management model on the software development project, in particular, effec-
tiveness of risk management to attain overall project goals. However, precise mea-
surement of the construct is a difficult undertaking due to the barriers involved in
implementing comprehensive risk management activities into the software devel-
opment project and lack of empirical data in the state of the practice. We consider
three main constructs which are relevant for the proposed approach. This makes
the study result more precise in terms of the purpose of the empirical evaluation.

• Goal-driven approach for risk management: First construct evaluates the
characteristics of the goal-driven approach specifically the effectiveness of
using goal modeling for software development risk management. It focuses
on the input used and artifacts produced for the approach. Scalability of
using a goal model is analyzed. The initial survey of this empirical study
identified the goals and risk factors associated with a software development
project. The case studies results specify the complexity associated with using
the goal model for the software development risk management.

• Overall GSRM method: Second construct focuses on the overall process
model by analyzing the usefulness of the activities, tasks and associated
methods used for the goal-driven risk management model. The main mo-
tivation of the proposed approach is to develop an easy to use and less over-
head risk management practice during the early development activities. It
specifies the characteristics related to used input, underlying activities and
methods, resulting artifacts as well as overall advantages and limitations of
the GSRM.

• Integration of GSRM into requirements engineering Third construct fo-
cuses on the integration of the goal-driven risk management approach into
early software development ,in particular, the explicit integration of GSRM
into requirements engineering phase. It focuses on several integration points
such as attributes dependency of the requirements and risk artifact, roles and
responsibilities, activities and techniques used with the RE and GSRM. These
integration points are used and analyzed to measure the explicit integration
of the goal-driven risk management model into requirements engineering.

6.1.3 Validity of Study Results

Validity is a critical issue of an empirical study. For instance, case studies are prone
to bias. General threats to case studies are related to the difficulties of collecting

106

www.manaraa.com

6 Evaluation

reliable results and on generalizing the findings. Threats related to the study con-
structs and internal and external validity affect the output and quality of the study
results. However, right quality of the study result needs availability of data, active
participation of the interviewer, minimum bias, comprehensive implementation
of the method and proper analysis and interpretation of the data. Unfortunately,
as stated, it is difficult to obtain the desired level of these factors in software risk
management domain. During the course of studies, we tried our best to overcome
the threats related to the validity. We examined possible validity threats from the
beginning of the study and study data was collected from multiple sources. The
studies were systematically planned and implemented.
Our studies are located in a single geographical region which is considered as low
cost development software environment. There is a possibility of cultural bias. But
we compare the obtained result to the other published results in the literature to
generalize our findings. The participants in the survey and case studies include
different groups of stakeholders and questionnaires are refined and improved af-
ter every study to eliminate any wrong context related to the study objective. We
believe the study results contribute to improve ,in general, the software develop-
ment industry ,in particular, low cost development environment like Bangladesh.
High quality precision of the study result is difficult in software risk management.
The main scope is to evaluate the proposed goal-driven risk management model,
i.e., methods, inputs, artifacts and its integration in requirements engineering. We
believe the scope is concrete and narrow. The survey and case studies partici-
pants were experienced practitioners who were involved in software development
for at least more than 3 years in Bangladesh. The case study companies are ac-
tively involved in both local and offshore software development for at least more
than 10 years. The result of the case studies summarizes the complexity associ-
ated with constructing and managing the risk specification artifacts. However,
the scalability is not fully studied due to the barriers associated to assess the in-
tegration of risk management into the development. One case study result pro-
vides a credible conclusion about the integration of the proposed method into the
requirements engineering. The result shows the practical use of goal-driven risk
management into software development project and positive feedback of using the
goal-driven approach for the software development risk management. We believe
this study results provide usefulness of software development risk management
into the project.

6.2 Study 1: Goal and Risk Factors in Offshore
Outsourced Software Development

This section presents the survey results [IJH09] of investigating goals related to
project success and threats which obstruct the goals in offshore-outsourced soft-
ware development from Vendors’ Viewpoint. This study was conducted using the
Delphi survey process. The participants in the survey were experienced practition-
ers of five software development companies in Bangladesh involved in offshore-
outsourced development projects. The main focus of the survey was to identify
the goals and risk factors based on actual experiences in offshore projects. The sur-
vey context is from a developing country with limited IT infrastructure facilities,
but where the offshore market is rapidly expanding through significant increase in
investments in recent years. E.g., the European Union has ranked Bangladesh as
one of the top 20 outsourcing destinations in the world [Bas].

107

www.manaraa.com

6.2 Study 1: Goal and Risk Factors in Offshore Outsourced Software
Development

Phase 1:
discover goal &

obstacle

Brainstorming session
Short overview of GSRM
Identify common goals & obstacles

Phase 2:
identify risk

factors

Interview session
Closed questions
Consolidate list of risk factors based
on standard deviation

Phase 3:
Rank the risk

factors

Online session
Final consensus rank based on
consolidate and participant’s rank

Raw list of
goals & risks

narrow list of
risk factors

Top ten risk
factors

Figure 6.2: Steps of Delphi Survey

6.2.1 Survey Method

We provide a brief overview of the survey and associated results. The method fol-
lowed was a three round Delphi process [Gei95, Sch97]. We have chosen Delphi
method because it facilitates multi-phase iterative survey with controlled feedback
loops. Here phase 1 involved discovering the goals involved from the perspective
of project success and high-level obstacles to these goals. This phase also included
collecting background information of the companies. Phase 2 focused on identi-
fying risk factors by refining high-level obstacles identified in phase 1. These risk
factors were then ranked in phase 3. Phase 3 was carried using a questionnaire
that distributed electronically using e-mail. Figure 6.2 shows an overview of the
tasks and goals by the three phases. A total of 15 participants were involved in
phase 3. According to the figure, phases are organized through a brainstorming,
an interview and an on-line session. Six Master of Information Technology (MIT)
students were mainly involved in the survey. The students are properly trained in
Delphi method and have adequate knowledge about GSRM. The output of initial
phase is used for the next phase. The survey was carried out between November
2008 and January 2009.

6.2.1.1 Phase 1: Discover Goals and Obstacles

In this phase, we used a brainstorming session with open ended questions to elicit
the main goals of offshore software development activities from the perspective
of project success. Student members directly interacted with the company partici-
pants to organize the session. The session also considered any challenges involved
which obstruct the identified goals. In addition, a short profile of the vendor com-
panies was outlined. The brainstorming session started by identifying a set of
general goals as success factors of the offshore software projects. We also analyzed
the goals by following the existing literature [Lin99, PVOD02, vL09] from the per-
spective of project success. These initial goals were high level and considered as
a starting point to discuss offshore outsourcing specific goal elaboration and re-
finement. In this phase, the participants shared their assumptions and experiences

108

www.manaraa.com

6 Evaluation

from offshore projects considering what makes the project success. Note that, the
brainstorming session was carried out separately at each of the five vendor compa-
nies involved in phases 1 and 2. And two student members coordinated the session
for each company. At the end of phase 1, the participants within specific vendor
company agreed a common set of goals as project success indicators. Table 6.1
gives an overview of the background information gathered on the participating
companies

Table 6.1: Brief Overview of Companies

Survey Companies Information
Company Profile More than 50 employees for 4 companies & less than 20 for the

fifth. Each company has more than three years of experience
with offshore software development projects.

Projects Share of total development activities and coverage:
40% of the projects targeted complete product and full
development activities, 35% of the projects involved only
coding, 11 % testing and 14 % maintenance.

Survey participants 3 participants inhibiting both roles of director and system
developer, 5 participants had the role of project leaders,
4 participants had the role of software engineers, 2 participants
had the role of testers, and 1 participant software architect.
Average job experience of the participants in offshore project
is more than 3 years.

6.2.1.2 Phase 2: Identify Risk Factors

A total of 128 closed questions were prepared for the interview rounds in phase
2 with three possible answers. These questionnaires were based on the feedbacks
from phase 1 and aimed at facilitating the refinement of the goals and high-level
obstacles. Furthermore, there were 15 open questions aimed at capturing any miss-
ing goals, risks or information not addressed in the questionnaire. The open ques-
tions response also had the role to reduce the bias of the closed questions, as it gave
the participants an opportunity to provide feedback on issues they had not been
able to express thus far. The participants were also asked to rank the risk factors
internally. The interviews lasted for about two hours per participant. At the end
of each interview, the participant was asked to narrow down the risk factors. We
produced a consolidated rank of risk factors based on mean rank of individual risk
factors and associated standard deviation.

6.2.1.3 Phase 3: Rank Risk Factors

In the final phase, participants were presented by the risk factors with their own
rating and the consolidated ranking. They were also asked to reconsider their
rankings and to provide a final ranking of the top ten risk factors. We received five
responses from five vendors because all participants of the same company jointly
selected the top ten risks. This enabled them to reevaluate their previous opinions,
so that the result moved toward a prefect consensus [Sch97].

109

www.manaraa.com

6.2 Study 1: Goal and Risk Factors in Offshore Outsourced Software
Development

6.2.2 Result of the Survey

The result of the survey showed a high consensus on five of the identified high-
level goals: (1) Attain project execution factors, (2) Manage human factors, (3)
Manage organizational factors, (4) Attain information security and (5) Compliance
with legal issues. These high level initial goals were refined into sub-goals by the
participants as part of the information collection activities in phase 1. The goals
are internally ranked according to the scale (1-5), where 1 means highest priority,
by means of their priority in contributing to a successful offshore project. In phase
2, risk factors were identified and aggregated into a consolidated set based on the
participants’ experience from both successful and failed projects. These risk fac-
tors were then ranked according to the quantitative scale (1-10) in phase 3, where
the values from 1 to 6 refer to a various degree of very important and the values
from 6 to 10 refer to a various degree of important, in terms of posing a risk to
a successful project. The risk identification focused on the factors related to the
offshore-outsourced software development environment. Risk factors that are in-
fluenced by external parameters, such as local infrastructure facilities and culture,
interaction with the client, usually require a longer time to fix. These risks were
usually ranked higher than the risk factors that can be addressed locally at the off-
shore location. At the end of phase 3, the risk factors were linked to the subgoals
using a cause-consequence analysis. Table 6.2 shows the identified top ten risk
factors and subgoals which they obstruct.

Table 6.2: The Top Ten Risk Factors

Rank Risk Factor Sub-goal
1 Lack of client involvement Effective client involvement

in development activities
2 Unstable requirements Reduce errors from requirements
3 Lack of communication ability Effective communication

and coordination possibilities and coordination
4 Ambiguous requirements Reduce errors from requirements
5 Lack of domain knowledge Quality and relevance of practitioner

of practitioner
6 Lack of commitment and Proper management direction

capability among management and support
7 Lack of ability for effective Effective development activities

change management
8 Employees not showing up for work Quality and relevance of practitioner
9 Failure to early identify hidden Stay in budget

costs and extra expenses
10 Failure to consider factors that delay Maintain realistic schedule

works , i.e., interrupt internet
service shortage of power supply

To understand Table 6.2, it is necessary to look into the identified sub-goals from
the phase 1. The goal Attain project execution factors, assigned as the highest prior-
ity in phase 1, focusing on the budget and schedule estimation, project complexity,
change management, specification, system operation and maintenance from the
perspective of project success. The goal was refined into six sub-goals: (1) clear
business and system vision, (2) stay in budget, (3) maintain realistic schedule, (4)

110

www.manaraa.com

6 Evaluation

attain technical feasibility, (5) effective development process and (6) attain product
quality. In general, early in the requirements engineering phase, initial elicited de-
velopment artifacts such as business vision (e.g., business goals, domains, business
processes and rules), system vision and system specification(e.g., system, integra-
tional and organizational requirements) require to review for analyzing the goals
under this category. Furthermore, factors related to project execution, such as bud-
get and schedule estimation, change management capability and project complex-
ity also influence the ability to attain the sub-goals. The risk ranking and linking
to sub-goals in phase 3 identified two very important risk factors: (2) unstable
requirements and (4) ambiguous requirements. This makes sense, as clear under-
standing and freezing of requirements are difficult to achieve in general and par-
ticularly in an offshore development context. The reasons are: lack of direct face-
to-face communication, lack of knowledge and understanding of the end-users
expectations and client’s business context and ineffective requirements elicitation
with little interaction with the client. (10) Local environmental factors, such as in-
terrupted network service, electricity problem, bank fees and strikes obstruct the
staying under budget sub-goal. Although according to the participants experience
this risk was not ranked as very important as compared to the other risk factors
ranked within 1 to 5. In addition, some of the offshore companies have imple-
mented specific strategies to pull the project despite of the low profit margin. This
tendency, along with some unwanted costs (9) obstruct the goal Stay in budget as
shown in Table 6.2.

Looking at the goal with the second highest priority assigned, Manage human fac-
tors, this was refined into four sub-goals: (1) quality and relevance of practitioners,
(2) effective communication and coordination, (3) proper management direction
and support and (4) effective client involvement by mainly focusing on the non-
technical issues within an early development environment. As shown in Table 6.2,
all these sub-goals were affected by the top ranked risk factors and were thus of
great importance for succeeding with an offshore development project. Several
survey participants mentioned that there were often lack of involvement and ef-
fective communication with the client. The consequence of this was noted to be
reworked, conflicts between client and vendor, wrong assumption and incomplete
requirements. In fact, all participants stated that they had faced this risk in most
of their offshore outsourced development projects and agreed to rank lack of client
involvement as the top risk factor (1). Furthermore, lack of communication ability
and coordination possibilities (3) by the vendor was also considered as a risk factor
that directly influenced effective communication and coordination. It was revealed
that this was mainly due to language and cultural barriers as well as lack of direct
(face-to-face) communication. Project members’ lack of domain knowledge (5) was
also a very important risk factor mainly due to incomplete understanding of client
business needs. Almost every participant agreed that there is always adequate
technical expertise within the vendor site. Lack of management commitment and ca-
pability (6) due to inadequate experience and professionalism often jeopardize the
overall project success and hinder the goal proper management direction and support.

The third highest prioritized goal was Manage organizational factors. This goal fo-
cuses on managerial issues rather than technical issues and can be refined into four
sub-goals: (1) effective risk culture, (2) stability of the organization, (3) adequacy
of the development facilities and resources and (4) effective policy and procedure.
Risk factors that influence meeting this goal are lack of management capability (6)
and employees not showing up for work (8) (i.e., see Table 6.2).

In addition to the three above-described high-level goals, two more goals were
identified: Attain information security and Compliance with legal issues in phase 1.
However, no direct risk factors were identified for these goals because existence

111

www.manaraa.com

6.3 Study 2: Integration of Risk Management Activities into Requirements
Engineering

local legal infrastructure does not obstruct the offshore software development en-
vironment. Moreover time difference do not hinder the practitioners for the effec-
tive communication as they were always work in shifts. However, some partici-
pants mentioned that variation of bank fee sometimes create difficulties to transfer
money from a foreign country. No participants faced problems with security issues
related to exchange of project documents and communication, hence they were not
discussed further in this study result.

6.2.3 Survey Study Conclusions

This survey study was performed at the initial phase of this research and focused
to understand the practitioners perception about the goal orientation view for the
software risk management. The complete model was not evaluated by this study
but we indeed identified some important findings about the goal-driven approach
for risk management. Based on the response, participants appreciated the integra-
tion of goal-driven approach into risk management. It seems reasonable to un-
derstand the risk factors which obstruct the goals. And every software project
considers generic and project specific goals as the project success indicators. Goals
also ease to communicate risk information with the project participants and man-
agement. The report identified cultural context as one of the important influential
factors for software development risk. Client participation affects more on the off-
shore software development activities. Most of the identified factors are from the
non-technical perspectives, i.e., human and environmental factors. Some risk fac-
tors identified by the other studies are not applicable to the local context i.e, time
zone difference, legal disputes, loss of control, technical expertise difference and
Information security problems [RPJLNA06, AMV06, TSY+07]. As many projects
run over budget, reducing production cost is essential. This is particularly true
in software development, in which there has been a move from in-house devel-
opment to global and now also to offshore-outsourced software development. We
believe the result aids to better support the emerging offshore outsourced devel-
opment environment in low cost development environment.

6.3 Study 2: Integration of Risk Management
Activities into Requirements Engineering

This section presents the case study result [IH10] of integrating GSRM into the re-
quirements engineering phase of an active on-going software development project.
The survey study result from the previous section gives us positive feedback from
the experienced software practitioners about using goal-driven approach for soft-
ware development risk management model. This study focuses on the issues re-
lated to the integration of the GSRM into requirements engineering phase. We
consider two different perspectives, i.e., artifact and process oriented view, which
support the integration points between requirements engineering and GSRM.

6.3.1 Demonstration Integration of GSRM into Requirements
Engineering

This section presents an overview of the case study and its results.

112

www.manaraa.com

6 Evaluation

6.3.1.1 Study Context

The company was a software development house in Bangladesh established in
1998. From 2003, the company expanded its business strategy to include offshore
customers and it has completed a total of 15 offshore projects focusing mainly on
the coding (implementation), testing and maintenance phases. At the beginning
of 2009, the company started an offshore development project covering all devel-
opment life cycle phases. Fortunately, as a former part-time employee of the com-
pany, I was able to obtain consent from the managing director to perform the risk
management activities into the project. Four Master in Information Technology
students of University of Dhaka, Bangladesh mainly took part in the case study.
They were my former project students and have obtained adequate background
knowledge about software risk management and goal modeling language through
lectures and tutorials. Moreover, two of them have gained experience by working
in three different software projects and the others have sound knowledge of soft-
ware risk management and requirements engineering.

The development team was on a tight schedule and was not interested in follow-
ing a detailed tutorial on software development risk management and GSRM. Our
team decided to give a high-level overview of GSRM and to take an active part
in the risk management activities themselves. The situation is similar to action
research but required an even tighter communication with the developers for a
successful study. The project concerned the development of a business informa-
tion system to support the clients core sales business processes. The project fo-
cused on the two modules: account and reporting, both were comprised of a num-
ber of features, such as bar code readable sales system, inventory and purchase.
The existing software on the client side that the project aimed at extending had
modules supporting item management and sales. The tasks for the development
team were to extend this existing software with accounting and reporting features.
The challenging part of the project was transformation of old data and data for-
mat into the new modules, which was built on a new platform and to integrate
this new platform with the existing hardware, i.e. bar code reader. The project
size was estimated to be approximately nine man months with a total duration of
eleven months. The development team consisted of a project manager, a require-
ments engineer, an architect, developers and testers with an estimated duration of
ten months. In early development projects at the company, risk management had
been performed in an informal way focusing on generic risks without any formal
process for risk identification, analysis, treatment and monitoring.

6.3.1.2 Study Objective

The main objective from our side was to analyze the effectiveness of software de-
velopment risk management during requirements engineering and particularly for
GSRM. Note that by the term effectiveness, we refer to the advantages and disad-
vantages of performing risk management activities during requirements engineer-
ing phase. For evaluation purposes, we identified a set of hypothesis to evaluate
the observed results. These are:

• H1 Software development risk management activities can be well integrated
with requirements engineering.

• H2 Goal-driven risk management contributes to manage software develop-
ment risks by considering a holistic view of both technical and non-technical
development components.

• H3 GSRM effectively reduces the requirements errors.

113

www.manaraa.com

6.3 Study 2: Integration of Risk Management Activities into Requirements
Engineering

6.3.1.3 Study Instrument

The project manager initially decided not to follow any formal detailed risk man-
agement practice in the project and preferred as many others rather an informal
and more ad-hoc approach. However as the management already provided their
consent to implement GSRM and project contained several challenging issues,
project manager and our team ended up for an action research strategy for the
risk management. It combined the planned case study approach with action re-
search to ensure the quality of the risk management part of the project. Project
information and artifacts, such as project context, project execution factors, busi-
ness context, business process, development team, user groups, environment and
existing application were analyzed. Our team then obtained feedback from the
project participants in general about the integration of risk management activities
into the requirements engineering phase and in particular the usefulness of GSRM.
The evaluation was performed using a mix of structured interviews, brainstorming
sessions and an off-line analysis of the initial project artifacts. The data collection
was done in different steps. First step consisted of two different parts: (i) interview
with the project team members using our interview template of 200 closed ques-
tions and (ii) brainstorming sessions were conducted with the risk management
team and other project participants. The interview results were used as input to
the brainstorming sessions with the purpose to identify project goals and risk fac-
tors. The brainstorming sessions were also used to plan for the risk control actions
and their implementation. The final step of the evaluation consisted of 30 open
questions given to the interview participants. The goal of this step was to obtain
feedback on the integration of risk management in requirements engineering and
on GSRM in particular.

6.3.1.4 GSRM Activities and Tasks in the Running Project

Initialize goal-driven risk management The project manager emphasized on
controlling risks related to the customer end , i.e., details of customer existing ap-
plication context, sales process, relevant legislation, customer organizational en-
vironment as the main scope of GSRM. Risk management team was comprised
of the project manager, student members and two development team members.
The project manager agreed to include GSRM into the late phase of requirements
engineering. Initially there were two brainstorming sessions scheduled and inter-
views were planned for the development team members and three members of the
offshore user end. However, later on more brainstorming sessions will be added
but not planned. The student members were mainly assigned the task to perform
the interviews and to analyze the project documents. The project manager took the
role as the risk manager and a feedback session was at this point already scheduled
to review GSRM.

Identify and Model Goals The project participants identified an initial set of
goals related to project success by linking to particular business process, system
vision, project execution, interaction with existing software and the user expecta-
tions as part of the requirements engineering activities. The risk management team
executed an off-line review of the initial project documents to elaborate the goals
based on project constraints, process, product, human and the environment. The
team completed the goal identification and modeling together with the require-
ments engineers and one customer representative via a series of conference calls.

114

www.manaraa.com

6 Evaluation

Identify and Model Obstacles An interview template with 200 closed questions
were used to identify the initial raw risk-obstacles from the project that obstruct
the goals. A brainstorming session was also conducted by the risk management
team to review the raw risk factors and clustered them into groups according to
the hierarchy. At this stage goals and risk factors were modeled and goal-risk
models were constructed. Furthermore, goals and risk details were documented
to construct the risk specification artifact. The interview template focused on the
issues that obstruct the project goals in particular related to budget, schedule, re-
quirements, human factor, project complexity and business specification. Details
on questions are presented in appendix A.

Risk Assessment and Treatment Risk levels were estimated by identifying the
likelihood of risk event occurrence and impact of the occurrence. Causal relation-
ship model was considered for linking the related risk factors to a single or multi-
ple risk events. I.e., risk factors as target nodes and risk events and consequences
as observable nodes. The risk event consequence focused on its negation to the
project specific goals. The rule set provided by GSRM was considered within this
context. The risks were prioritized and the project manager was initially interested
in the risks having risk level between high and medium. Finally, countermeasures
were identified and planned to control these risks. Note that, as GSRM focuses
on effective use of time and resources, the project manager was more concerned
to prevent or reduce risks. Our team focused more on the control actions that can
prevent or reduce risks. The selection of appropriate control actions for the pri-
oritized risks also depends upon the availability of specific relevant agent who is
responsible for implementing the action. For instance, the agent can be a practi-
tioner who is responsible to implement the risk control action. This means that the
project manager role is also important when selecting the suitable risk control ac-
tion. He knows the status of practitioner and customer/user representatives who
can effectively implement the control action. At this stage, our team documented
details on the risks and the state of the risk status report. The project manager
was assigned the responsibility to monitor the risks throughout the development.
However no scheduled plan was undertaken for the risk monitor.

6.3.1.5 Feedback about the effectiveness of GSRM

Regarding the effectiveness of GSRM in requirements engineering, our team used
30 open-ended questions to structurally collect comments from the project prac-
titioners. Apart from the risk management team, requirements engineer and one
developer participated in this last feedback-loop. The questions also helped them
to form their opinion about GSRM as goal-driven risk management approach in
general and its contribution to requirements engineering in particular. The open
questions details are presented in Appendix B.

6.3.2 Study Result

There are several findings with respect to the GSRM and its integration in require-
ments engineering that should be noted:

• Time and effort of GSRM activities The activities of GSRM were regarded as
systematic and did not incur any extra burden to requirements engineering
activities. Around 15% (i.e. 4 person days for 45 days) of the overall project
effort is allocated for producing a complete requirement specification. GSRM
only consumed 14 % of the estimated requirements engineering effort.

115

www.manaraa.com

6.3 Study 2: Integration of Risk Management Activities into Requirements
Engineering

Table 6.3: Agreed Project Goals

Goals
Project Constraints
Improve[RealisticBudgetEstimation]
Maintain[EstimatedBudgetThroughoutDevelopment]
Improve[RealisticScheduleEstimation]
Maintain[EstimateScheduleThroughoutDevelopment]
ClearRolesAndResponsibilitiesAssignment
ClearBusinessGoals
ClearProjectScope
Minimize[TechnicalComplexity]
Process
Improve[AdequacyofTasksAndMethods]
Improve[FormalRiskManagementPractice]
Product
CompleteSalesProcessInformation
Reduce[ErrorFromRequirements]
PreciseIntegrationofExistingData
CompleteSystemSpecification
Human
Improve[CompetencyofTeamMembers]
Improve[Customer/UserParticipation]
Reduce[Customer/UserDissatisfaction]
Improve[OverAllTeamPerformance]
Improve[EffectiveCommunicationAndCoordination]
Improve[ManagementCommitment]
Environment
Improve[StabilityofTheOrganization]
AdequateDevelopmentFacilities

• Identification of Goals and Risks There were several goals identified and
agreed with the project manager and other practitioners of risk management
team. Some of the goals are outlined in Table 6.5. These goals are impor-
tant and desirable for any software development project. We follow KAOS
temporal notation to textually represent the goals.

Risk factors identified from the project context that directly obstruct the goals
are also outlined in Table 6.4. Our team observed that some factors influ-
enced more than one risk event as well as obstructed more than one goal
compared to the other risk factors. These factors are important and require
extra attention to control as early as possible. Table 6.4 shows the high prior-
itized risk factors and associated events identified from the project.

The elicited requirements are one of the main sources for these risk factors.
A total of 165 system requirements were identified while performing the risk
management activities. Our approach facilitated to identify the errors from
the elicited requirements. Our team found that 12 of the requirements were
under-specified or ambiguous, 12 were unstable, 8 were incorrect and 5 were
technically infeasible. 35 out of the 165, i.e., approximately 22 % of the sys-
tem requirement were erroneous. There are several causes for these require-
ment errors, for example the project was inherently complex due to the large
number of links among system components and with external customer ap-
plication, lack of knowledge about the customer business environment and

116

www.manaraa.com

6 Evaluation

Table 6.4: Identified Risk Factors and Events

Risk factor Event
Under-specified,unstable,incorrect and Erroneous requirements,
infeasible requirements, Operational infeasibility,
Incomplete specification, Project complexity,
Software demands several external links Incompetence practitioner,
with other part, Unclear system vision ,
Unclear business process, Ineffective communication,
Practitioner inadequate domain knowledge, Passive user involvement,
Local environmental problems, Customer/User dissatisfaction,
Missing legislation information, Budget overruns,
New development platform. Schedule overruns.

difficulties to convert existing data to the software-to-be use. There are also
other causes, for instance customer/user representatives were not actively
involved during the requirements elicitation, information regarding regula-
tory compliance was partially missing and new development platform was
required to support the specific device for the project. Moreover, local en-
vironmental factors, such as power shortage and interrupted Internet band-
width were also creating problems. Risk factors were raised from all develop-
ment components and consisted of both technical and non-technical issues.

• Assessment and treatment The control actions were considered by conduct-
ing a brainstorming session by the risk management team. The project man-
ager mainly focused on the issues related to the user representative for re-
solving these risks. Inadequate knowledge and lack of user participation
and cooperation was the most influential risk factors of the project context.
These factors obstructed the goals like clear project scope and business pro-
cess and active user involvement. Initially the focus was to completely pre-
vent the risk, otherwise reduce it as much as possible to satisfy the goals.
Unfortunately, due to the inherent nature (i.e. factors beyond the project
manager control), not all risks were resolved. Figure 6.3 shows the goal-risk
model for the reduce error from requirements. It shows lack of participation,
inadequate knowledge and missing information are the most influential risk
factors which obstruct sub-goals related to the reduce requirements error.
Some of the requirements were also unclear for both customer and devel-
oper sites. The project manager considered it as being a common situation in
offshore projects. However, due to the schedule pressure, these requirements
can pose severe problems later on. But no immediate actions were taken in
respect to these requirements. It was rather decided to gather more infor-
mation in particular about the existing applications, component dependen-
cies, business process and legislation context to make the requirements clear
and complete. The identified under-specified, unstable, incorrect and infea-
sible requirements are reviewed further as a part of reducing requirements
errors. Goals, system vision and end user expectation were analyzed further.
Two requirements were removed due to their technical infeasibility after ap-
proval from the user. Out of the 35 requirements, 15 requirement errors were
completely solved. The remaining requirements errors were not resolved at
that time and it was decided to analysis then further. In addition to the re-
quirements errors, some other risks, such as inadequate knowledge about
programming platform were also resolved. E.g., the project manager recom-
mended to assign additionally one or two new members with expertise on

117

www.manaraa.com

6.3 Study 2: Integration of Risk Management Activities into Requirements
Engineering

casestudy2

Figure 6.3: Goal-risk-treatment model to Reduce Requirements Errors

the system-to-be required for the project. The interaction links between the
existing application and the software-to-be developed needed more investi-
gation so that external link can be properly understood. Active involvement
of the key members of user groups and detailed information of the existing
applications were required.

6.3.3 Discussion

We made several observations about GSRM from the case study context and these
are discussed in the following.

6.3.3.1 Integration of Risk Management into Requirements Engineering

There are indeed strong dependencies among requirements and risk artifacts. In
particular, business specification, project goals and system specification(i.e., sys-
tem, user, organizational and integrational requirements) closely support goal and
risk identification activities. Risk management as a part of requirements engineer-
ing contributed to produce a complete requirement specification document. It also
supported to control the risks related to human and environment, such as prac-
titioner domain knowledge, customer/user participation and adequate develop-
ment. Activities of GSRM did not introduce any conflicts or significant unneces-
sary burden with the requirements engineering activities. A project manager with
background knowledge and experience in risk management would able to per-
form the sufficient level of risk management activities. Current project have not
any risk manager and project manager successfully performed the risk manage-
ment activities. Furthermore, the requirements engineers also contributed to the
goal and risk identification and later on also to risk control and monitor activities,
in particular fixing requirements errors. This is because GSRM is a goal-driven
approach which greatly eases the risk management activities and systematically

118

www.manaraa.com

6 Evaluation

integrates such into requirements engineering. Risk control actions showed that
requirements errors can be reduced (i.e. 42 % of the errors were solved) with the
support of GSRM, practitioner and user. We observed that risk assessment results
help to prioritize requirements so that high important requirements get early at-
tention to the later development phase. We can conclude that the observed results
corroborate hypotheses H1 and H3. Moreover, in the evaluation process, we con-
sidered risks from both the technical and non-technical perspectives. Thus the
result of the case study also confirms hypothesis H2.

6.3.3.2 Overall Observation of GSRM from the Case Study

GSRM is a goal-driven approach and eases the practical execution of risk assess-
ment and risk treatment activities. Goals are identified from the project success
criteria and by following the component- element-factors hierarchy. On one hand
several risk factors may influence multiple risk events. On the other hand the same
risk event may have different impacts on different goals. For instance, erroneous
requirements obstruct two goals, i.e., reduce errors from requirements and main-
tain estimate budget throughout development. But risk event impact on the goals
always varies based on the nature of the goal. These goals and risk factors were
ranked highest priority w.r.t. current project context. Our team also observed that
the same risk event can be a risk factor in another context. For instance erroneous
requirements as a consequence of requirements faults, such as under-specified, un-
stable, incorrect and infeasible requirements and further being a risk factor for the
schedule or budget overruns. The consequences and causes of a risk event may
vary depending on the context.
Further on, there were several points that the participants ,in particular, the project
manager and requirements engineer remarked, in addition to those mentioned
above:

• The closed questions and the brainstorming sessions are effective techniques
for the risk identification.

• Development component-element-factor hierarchy eases to identify and cat-
egorize the goals and risk factors.

• Goal refinement is difficult as there may be several sub-goals under one par-
ent goal. Large number of sub-goals can increase the complexity for handling
the goals through assessment and treatment. Precise goal quantification is
also a difficult undertaking. Goals related to budget,schedule, requirements
and human perspectives obtain the highest priority.

• The effort involved in developing risk artifacts, e.g. risk status report and
goal-risk model, are in general reasonable. However, if the number of sub-
goals increases substantially it will incur extra burden on managing the arti-
facts in particular for projects with tight schedule and budget pressure.

We treat the last two remarks as limitations of GSRM. The limitations can increase
the overall risk management effort in requirements engineering. During the re-
quirements engineering activities, it is also not possible to plan and control all
identified risks due to inadequate knowledge of the system-to-be’s problem space
and uncertainty about the future project execution activities. Additionally, if a
project contains many risk factors, then modeling the goal-risk and causal rela-
tionship and maintaining the risk status report would consume more time. As
we have only considered a single software development project, the data is lim-
ited and the validity of the experiences made, as well as its generalization, cannot
be concluded upon. This restricts the choice of data points to analyze the results.
What we did was to document all information collected from the interviews of

119

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

both closed and open questions and the brainstorming sessions. The result of the
identified risks was compared with published risk factors [SNKT08, IN08, NI09]
from similar development environment to augment our limited experienced data.
The risk factors and the consequences from the case project coincide with the pub-
lished survey result of the offshore projects’ risk factors . E.g., requirement er-
rors, in particular unstable and incorrect requirements, inadequate project domain
knowledge, are also highly ranked by other research results. The local environ-
mental context highly influences the risk factors; we do realize that project risks
are culture-dependent [SNKT08], which is also observed in the related research.

6.3.4 Case Study Conclusions

This study implements the proposed approach in a running offshore software
project to analyze the effectiveness of GSRM. The results showed that GSRM can be
well integrated into requirements engineering phase and effectively contributes to
reduce the requirements errors. GSRM is particularly beneficial at the early phase
of development because at this stage the project generally focuses on formulating
and understanding the core goals and specifications of the system-to-be. GSRM
provides warning of the issues which would negatively impact on the project later
on. The model also supports in identifying potential risks from both the technical
and non-technical development components. The case study context was a devel-
oping country with limited IT infrastructure facility. We believe that this type of
research contributes positively to the offshore market in the local context which is
continuously growing. Further work includes more case studies as well as work
towards improving our understanding of integrating risk management into soft-
ware projects in particular at the early stage. We would also like to review GSRM
for further improvement by following the stated observations of the participants
within the case study.

6.4 Study 3: Implementation and evaluation of a
goal-driven risk management model

The previous survey and case study context is mainly offshore outsourced soft-
ware development project. This study focuses on a software development project
where the customer is a local government ministry. Customer context of this study
is different compared to the previous studies. This study shows some unique re-
sults however the goal is not to differentiate between local and offshore projects.
Here a replicated evaluation of the same risk management method is considered,
i.e., GSRM , to generalize our findings in varying context. This also allows to iden-
tify any contextual factor important for the software development risk manage-
ment. This result is the final part of our continuous investigation on the GSRM
and its integration into the software projects. The objective of this empirical study
is to evaluate the usefulness of goal-driven risk management model from early
requirements engineering phase of software project.

6.4.1 Evaluation approach

We have chosen empirical method to evaluate the main contribution of this re-
search. Similar to our previous investigations, here case study method is used to
evaluate the GSRM. We are concerned about the practical use of the goal-based
risk management model in the industrial context. Software development project is

120

www.manaraa.com

6 Evaluation

a multidimensional undertaking, validating a single method from a complex set of
activities is difficult. Hence, there exist a number of challenges to perform an em-
pirical study in software risk management domain. Firstly, software development
projects generally contain a long fixed duration and always pressure to put the fo-
cus on time, budgetary and quality control. A comprehensive risk management
practice is not always possible. Secondly project manager and practitioners have
lack of motivation to perform a comprehensive risk management activities into
software development projects. They always perceive risk management as an ex-
tra work. Lack of practitioners’ motivation and involvement restrict to reduce the
validity threats and reliability of the overall study. Finally, every software devel-
opment project is unique and evolves due to the change of project scope, market
demand and technology. The project generally contains various numbers of un-
certainties. Project can have too many risks in various dimensions and it is not
possible to control all these risks. Risks are subjective by nature and past project
risk values may not provide accurate estimation in the running project context.
These challenges make it difficult to assess the precise effectiveness of comprehen-
sive risk management method in a software development project.
Nevertheless, despite of these challenges, there exist a limited number of study
results such as [JKL98] about the impact of risk management on the overall soft-
ware project. We previously conducted a case study for evaluating GSRM and its
integration into requirements engineering [IH10]. The results provide important
conclusions about the impact of GSRM into software development project. Cur-
rent study focuses to further investigate GSRM by implementing it into an active
on-going software development project. It mainly repeats the similar investigation
but in a different context. This study treats as exploratory bias because the results
from the current study generalize the existing findings within different context.
In this study, we combined case study method with action research. Generally
an action research makes an effort to provide practical value to the study sub-
ject while simultaneously contributing to the acquisition of new theoretical knowl-
edge [ESSD07]. This allows us on the one hand to guide the development team
for managing risks and to attain goals during the development and on the other
hand to identify ways to improve the GSRM process. For our case, GSRM fol-
lows the project documents and artifacts to identify the goals and risks. The risk
management results effectively use to control the identified risks of the on-going
software project and contribute to meet the project goals in order to improve the
overall project situation. Our study combines theory, practice, case study and ac-
tion research so that in-depth understanding of the GSRM impact into the software
projects can be demonstrated.

6.4.2 Evaluation of GSRM

This section outlines the details of our empirical investigation of the proposed
goal-driven risk management model.

6.4.2.1 Study Context

Company profile We present the findings of the empirical study result from
a software development project at Domain Software Technologies Ltd (Domain
Tech), a subsidiary company of Domain Technologies Ltd. (London, UK parent
company) and Domain Consulting (M) Sdn. Bhd. (Kuala Lumpur, Malaysia - Sis-
ter Company) [Dom]. Domain Tech started its operation at 2002 in Bangladesh
with multi dimension lines of business, such as software development, global IT
support and consultancy. Since then, several projects were successfully completed

121

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

for clients located in UK, USA and Malaysia. The company obtained adequate ex-
perience in offshore as well as inshore software projects. Currently the company
has a total of 72 employees at the Bangladesh site.

Project context The project considered in the case study aimed to automate
Planning Commission Campus of ministry of planning, as a part of the e-Governance
project of the government of People’s Republic of Bangladesh. The project con-
text is mainly development of an application software which contains ten sepa-
rate modules to automate day to day ministry activities. The modules are: Project
Planning, Personnel Management, Payroll Management, Budgeting, Auditing and
Accounting, File Tracking, Letter Dispatching, Meeting minutes, Library Manage-
ment, Inventory and Vehicle Management. Every module has own features, con-
strains and requirements and relates with other module. For instance, personnel
management system mainly manages profiles of all planning commission employ-
ees including individual job record, leave management which will help to generate
employees transfer order. The features of personal management system are: con-
figuration, staff profile, leave management and reports. Similarly other modules
contain its own features, such as payroll management system features are: con-
figuration, salary structure, festival bill, loan/advance, increment and reports and
budget system features are: configuration, budget, bill, audit and reports. Two fea-
tures are common to every module, i.e., configuration and reports. Configuration
allows users to customize individual module for its effective use of the software
with minimum change. The purpose of the reports is to produce documented out-
put like office order and notice. The main project goals are:
• Automate the whole planning commission campus
• Digitize old and new data and dynamic report generation
• Interconnect with existing software in the Commission campus
• Train employees for the new system

Project riskiness The project was challenging from the Domain Tech point of
view due to several reasons. This was the first government project of Domain tech
and main users are the government employees. Initially there existed a high level
technical specification about the different project modules. The specification was
developed by a consultant company on behalf of the ministry. Based on the speci-
fication, Domain Tech similar to other vendors submitted an expression of interest
and successfully obtained the work order. Apart from the office automation ap-
plication software-to-be developed, project context also included a comprehensive
user training. The development team consisted of 15 members with duration of
13 months. 90% of the users will belong to campus users. A total of 500 users
are located in the main campus. The Domain Tech management and main project
team members considered the project as high risk even though practitioners have
experience to work in similar projects. The reasons are:
• Lack of experience to handle government employees
• high level initial specification
• Large numbers of users training who are government officials
• Effective usage of the product and user satisfaction
• High reputation of the project

Despite the project is considered as high risk project, the management decided to
undertake it to accomplish the vision. The management vision was to successfully
develop the office application and customize it for the other government ministries

122

www.manaraa.com

6 Evaluation

and agencies. High reputation and user satisfaction may give Domain Tech a com-
petitive advantage on the market as recently government decided to digitialize its
ministry offices under the Digital Bangladesh Vision 2021 project [Dgb]. The project
is important for the Domain tech to capture the market for the future business
gains.

6.4.2.2 Study Construct

The main focus of this study is to specify the impact of goal-driven risk manage-
ment model on the software development project. Study goals are

1. Evaluate the advantages and limitations of goal-driven risk management in
software development projects

2. Improve our understanding of the issues involved in integration of risk man-
agement activities into requirements engineering

We plan to implement a complete GSRM activities for the evaluation. Project par-
ticipants’ positive and negative observations, risk management results and process
integration are mainly used to evaluate the benefits and weaknesses of GSRM. Fur-
thermore, quantitative metrics, such as effort spent on GSRM in requirements en-
gineering, number of risks and treatment actions over time are also considered to
support the study goals.

6.4.2.3 Study Plan and Data Collection

I initially requested Mr. Zaheed who is the senior member of Domain Tech devel-
opment team to evaluate the risk management activities in a software development
project. Later on Mr. Zaheed was selected by the management as project manager
of this ministry project. He actually helped to obtain consent from the manage-
ment regarding the integration of GSRM into the project. The management was
convinced to integrate a comprehensive risk management practice in the project
due to the project inherent risky nature. Figure 6.4 depicts the initial plan for the
study. The study will use project specific documents as input and carry out ses-
sions like kick-off and brainstorming as well as interviews to execute the risk man-
agement activities. Risk management artifacts are produced as output which will
be used to control the identified risk and to attain the project specific goals. Finally
feedback about GSRM will obtain to evaluate the method in a subjective way.
We collect data mainly through interview and brainstorming sessions with the
project participants, users and sponsor representatives and by analyzing the project
documents and development artifacts. Both qualitative and quantitative data are
collected and analyzed to meet the study goals. Two different sets of question-
naires, i.e., closed and open questions are used for data collection. Closed ques-
tions focus on the existency and frequency of problems and their causal dependen-
cies to the risk events and consequences. The questions are arranged by following
the component-element-factor hierarchy and question answers contain three possi-
ble values. The open questions are mainly descriptive and comparative questions
used to identify the participants’ perception about the goal-driven risk manage-
ment approach and its integration into the requirements engineering. Open ques-
tions answer specifies practitioners’ beliefs about risk management and its impor-
tance to the development. In the beginning, a kick-off workshop was carried out
among the development team to provide an overview of GSRM, risk artifacts and
its integration into requirements engineering. The open and closed question re-
sponse and project artifacts were input for the brainstorming session. Two Master
of Information Technology (MIT) students of Institute of Information Technology

123

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

Initialise
GSRM

RM plan

 project scope, business goals, business and system specification,
information about development team, user , and management, quality,
development process, development environment

Identify &
model goals

Identify &
model risk
obstacle

Assess risk Treat &
monitor risk

input

output

GSRM
activities

Brainstorming session and input analyze

Kick-off workshop

Interview offline/online

Goal
details

Raw risk
factors Risk details Control action&

goal-risk-control
model

Common
activities

Feedback
about GSRM

Usefulness
of GSRM

Figure 6.4: Case Study Details

(IIT), University of Dhaka, Bangladesh were employed for the implementation of
GSRM.

6.4.3 Introduction of GSRM Process

6.4.3.1 Activity:1 Initialize Goal-driven Risk Management

A kick-off workshop by the student members was initially carried out to pro-
vide an overview of GSRM. And the final part of the workshop was used for
the GSRM initialization activity. The Project Manager (PM) elaborated the fac-
tors which brought the project as a risky one. The first task under this activity
(i.e., determine the riskiness nature of the project) was already done and main fac-
tors for the high risky project were noted. Project scope, success criteria, business
goals and initial high level system specification were used to define the risk man-
agement context. The risk management scope was to control risks related to the
application from a holistic perspective specifically project execution, user, product
specification, quality and user training. The risk management scope was biased
by the project inherent challenges and scope. However, risks related to project
sponsor, fund support and user internal organizational problems were not consid-
ered. The Risk Management(RM) team was also approved by considering PM as
the main authority, student members and 2 development team members. The PM
role was the main authority responsible for the successful implementation of risk
management activities and to communicate the results with management and user
representatives. The risk management was scheduled at the first deliverable phase,
i.e., requirements specification and design phase. The interview participants from
both users and sponsor representatives were identified and schedules were also
planned. However no schedule was considered for risk monitor and PM decided
it as a demand-basis activity.

124

www.manaraa.com

6 Evaluation

Table 6.5: Identified Goals and Sub-goals

Goals Sub-goals
Complete project in estimated maintain estimated budget in development
budget and schedule maintain estimated schedule in development

maintain realistic estimation
clear milestones
competence practitioner
reduce errors from requirements
user active participation
user positive motivation

Complete user’s training adequate training budget
professional and competence training
complete training and user manual
user active participation
user positive motivation
improve effective communication & coordination
improve practitioner motivation& productivity
reduce user and practitioner conflict

Obtain positive reputation, user satisfaction
Generalize the application complete project in estimated budget

and schedule
quality product
successful training
details understanding of business process
successful system usage
complete elimination of existing manual system
complete specification

6.4.3.2 Activity 2: Identify and Model Goals

This activity was carried out by a brainstorming session among the members of
RM team. RM plan is considered as input for this activity. Furthermore, project
artifacts, such as project scope and execution, business scope, system specification,
human and overall development environment and Domain Tech business vision
were also considered to identify and model goals. Four high prioritized high level
goals were agreed for the project, they are: complete project within estimated budget
and schedule, complete user’s training, obtain positive reputation, and the application
for other government ministries. First two goals were considered by focusing on the
project contract and needed to be achieved before the system goes in operation.
The remaining goals were critical for the future business vision of Domain Tech.
However, it needs user positive feedback, product overall quality and product suc-
cessful operation and maintenance. High vendor reputation can give a competitive
advantage to obtain a work order of a similar government project. Generalizing
application by gathering knowledge from this project can significantly reduce the
development cost. These goals were refined during the session. Table 6.5 outlines
the goals and sub-goals which are agreed by the RM team. The goals are related to
each other and same sub-goal links to more than one parent goal.

125

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

6.4.3.3 Identify and Model Obstacles

Initially the interviews were carried out by the student members with the selected
practitioners of the development team. The interviews continued further with 12
users and 1 sponsor member of UNDP. It took more time than expected with the
user members as they did follow the agreed schedule and lack of their project do-
main and IT competence knowledge. RM team also needed to provide an overview
of goals, risks and main purpose of the interview before actual interviews have
taken place. 200 closed questions were used for the interview and it took approxi-
mately 2 hours for an individual practitioner to answer the question and more than
3 hours and 30 minutes for an individual user. Interview responses were complied
to generate a raw list of risk factors. The raw list was very large and was refined
by following the identified goals.
Most of the identified risks were related to the project execution, product and hu-
man, in particular, from the schedule problems, product specification and user per-
spectives. The PM said, “we didn’t get the full requirements and missed a lot of things in
the initial specification. Our management agreed to accept any user change/update at any
stage in the contract and believed it will increase the company reputation, but it was indeed
a great mistake. Users cannot provide detailed information and later on we have identified
numerous gaps and needed to incorporate all of them”. Users added several new things
compared to the initial specification based on which schedule and effort estimation
was calculated. Numerous changes were requested by the users, such as change of
staff profile and lay out or addition of more functionalities under a specific module
related to personal and payroll management, budgeting, auditing and accounting.
The collected information is sometimes ambiguous in a sense that different inter-
pretation of the same context. It was difficult to obtain appointment from the high
officials and needed several meetings to collect the relevant information. But their
remarks were important for the project acceptance. Some of the users have not
adequate knowledge about the software application but played main roles to sup-
port the key business process. There were ambiguities in describing the process
and roles involved within the process. Once an interview was completed no user
agreed to sign the interview documents. At the end of the requirements analysis,
it consumed much more time than estimated.
Another problem arose about the number of users who will participate in the train-
ing. Initially Domain Tech agreed to train 500 users. However during the require-
ments identification and on site observation, there were about 800 users identified
who needed training for the new system environment. But the planning ministry
and UNDP refused to increase the training budget as total project budget was al-
ready approved and no room for revision because several donor agencies sup-
ported the project fund. Domain Tech also had inadequate experience to handle
the government officials. Existing data were hard copy documented and had very
dissimilar structure, which made it difficult to convert the old data into new for-
mat. Risk factors were summarized from the raw list. These factors were mainly
due to the unavailable, wrong and incomplete information, poor participation, er-
rors from the existing system which brought incomplete specification and inaccu-
rate estimation. Table 6.6 shows the risk factors.

6.4.3.4 Assess Risk

RM team considered interview response of the selected risk factors as initial in-
put for the risk assessment. Moreover, PM’s and other members’ experience and
the pre-assumptions provided by GSRM about the causal link of the risk factors
to the risk events and consequence to the goals were also considered to estimate

126

www.manaraa.com

6 Evaluation

Table 6.6: Identified Risk Factors and Events

Risk factor Event
Numerous change request Budget overruns
Users passive involvement Erroneous requirements
Users lack of project domain knowledge Schedule overruns
User lack of IT competence Ineffective training
Inadequate training budget Unclear system vision
Large number of users requiring training Ineffective communication
High training cost User dissatisfaction
Incomplete & incorrect initial specification Poor system use
Over-promise & Inaccurate estimation Poor reputation
Error in project contract Incomplete information
Lack of experience of handle government officials Unable to generalize product
Bureaucracy nature of organization Poor feedback
User lack of motivation Deployment problems
Data conversion difficulties High variation
Unwilling to sign interview document
Complex interactions among the modules
Political biasness

the risk event likelihood and risk impact. Figure 6.6 includes risk events caused
by identified risk factors. These events directly obstruct the goals, for instance
budget overruns, erroneous requirements, poor training and system use obstruct
the goals like complete project in estimated budget and schedule or vendor high
reputation. To construct causal relationship model, risk factor, event and risk pri-
ority were considered as target, observable and decision nodes of BBN. RM team
agreed that budget overrun is the high prioritized risk factor. Risk factors like in-
accurate estimation, high training cost, erroneous requirements and schedule over
runs casually linked to the budget overruns as shown in Figure 6.5. These factors
are the most influential for the project context and some of them were beyond the
project manager and project environment control. The identified factors brought a
complete obstruction to the goal maintain estimated budget in the development.
Erroneous requirements and schedule overruns considered as risk factors but these
factors treated as risk event in different context. Finally risk events were prioritized
into three scales, i.e., very important, important, and less important, so that severe
ones get immediate attention.

6.4.3.5 Treat and Monitor Risk

RM team initially planned to control the high and medium prioritized risks by
completing eliminating or reducing likelihood of risk event and associated im-
pacts. The session started to identify the possible countermeasures and selected
the potential ones so that the goals could be attained.

Erroneous requirements are one of the main events which negatively consequence
to several goals like complete project in estimated budget and schedule, reduce er-
roneous requirements, improve completeness in requirement specification, quality
product and generalize application. Users’ factors were the main reasons for the
risk events and large number of users increase the total training cost and over-
all project budget. But these factors were beyond the PM controls and difficult to

127

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

Schedule
over-runs

Budget
overruns

Erroneous req.

User passive
involvement

Inaccurate
estimation

User lack of
knowledge

Numerous
change request

Incomplete
specification

Ambiguous
information

Maintain
estimated budget

impact

High training
cost Budget overrun

priority

Figure 6.5: BBN Network for Budget Overruns

eliminate completely. RM team identified possible countermeasures to control the
very important and important risk events, i.e., train selected representatives from user
groups, extensive user involvement, signed frozen requirements, complete understanding
of users business processes and dependencies among the modules, obtain and incorporate
key users feedback and include a J2EE expert into the project. The identified counter-
measures were potential and would not incur additional cost except integration of
a J2EE expert. However, it was difficult to involve the key users even though they
were available in the commission campus. And user lack of project domain knowl-
edge and lack of IT competency could not be addresses by any means. However
training selected users would reduce the overall training cost significantly. RM
team emphasizes on professional and competence training and preparation of a
comprehensive training manual before physically deploy the system. Still there
was no effective way to address the numerous change requests but PM decided
that once the feedback would be integrated then frozen requirements of a specific
module will be signed from the key user. But at that stage, the project experienced
a huge number of user change requests and several new things were added com-
pared to the initial specification. PM agreed that it would not be possible to main-
tain the estimated budget and schedule and management decided to accept 15%
budget overrun. The management also decided to keep their reputation high by
any means and a complete understanding of the business processes is essential for
the project as well as for the future customization. The management also decided
to arrange workshop sessions with the high government officials by informing the
status of the project and necessary action lists. These sessions would be effective
to develop and implement the application into the planning commission campus.

6.4.3.6 Goal-risk model

Figure 6.6 depicts the goal-risk model for complete project in estimated budget.
The goal refines into several sub-goals, such as maintain estimated budget and
schedule, realistic estimation, clear milestones, user active participation and mo-

128

www.manaraa.com

6 Evaluation

risk_cp1

Figure 6.6: Goal-risk model for project completion

tivation, reduce errors from requirements. Risk factors, such as numerous change
requests, user passive involvement and lack of knowledge, high training costs, in-
accurate estimation, errors in contract and incomplete specification obstructed the
sub-goals and lead to the risk events like erroneous requirements, schedule over-
runs and budget overruns. The bottom part of Figure 6.6 shows treatment actions
and associated agents responsible to implement the actions. E.g. comprehensive
and competence training.

Figure 6.7 shows the goal-risk model for obtaining positive reputation. The goal
was rather subjective and refined into user satisfaction, quality product, successful
training and system usage. Risk factors like poor training, ineffective communica-
tion, incomplete and complex product, retain existing system obstructed the goal
and lead to user dissatisfaction and low reputation as the main risk events. User
motivation for the new system, effective cooperation between users and practi-
tioners, complete and competence training are important goals which can mitigate
the risk factors. Eliminate old system was considered as a requirement within the
control action. Project contract did not cover maintenance part which seemed to
be important for this project context. PM decided to convince the project sponsor
to allocate maintenance budget for the project. Domain Tech management also de-
cided to arrange 2 or 3 common workshop sessions apart from training to motivate
the users for the system-to-be deployed.

The difficult part regarding the risk management was to convince the key govern-
ment officials about the control action implementation. The PM communicated
the agreed control actions to the management and management planned to set up
a meeting with the planning commission secretary. In the meeting, the secretary of
planning ministry agreed on the recommended actions and assigned 20 key users
to be extensively involved in development if necessary. The secretary also circu-
lated an office order at joint, deputy and assistant secretary level to collaborate the
project work by giving necessary information. Furthermore, only 58 users were

129

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

goal_risk_reputation

Figure 6.7: Goal-risk model for positive reputation

selected for the training session conducted by Domain Tech who will train the re-
maining users. PM decided to arrange a risk monitor meeting initially twice in a
month and less frequently at a later stages of the development. At the end stu-
dent members carried out the interview session with the open questions to obtain
feedback about GSRM. The interview participants were PM and other members
of the RM team, three practitioners of the development team, one management
representative of Domain Tech and two users.

6.4.4 Comparison of the Study Result with Previous Research

In our previous studies, only offshore software development projects were inves-
tigated where customers/ users are located in different locations [IJH09, IHMFJ09,
IH10]. But the present study context is a software project for a local customer. We
compare study result with the previous research in the literature specifically those
concerned software development risk factors and their influence to the project out-
comes. There is a substantial commonality fully or partially among the present
study result with the existence published risk factors. For instance, Schmidt et
al. [SLKC01] identified a comprehensive list of risk factors and top factors like
lack of adequate user involvement and cooperation, lack of frozen requirements,
change scope and unclear/misunderstood scope/objective is similar to our find-
ings.
The most noticeable areas which include distinctive risk factors by our study are
user, user’s organizational and requirements context which match with impor-
tant risk components like schedule and budget, requirements management and
personnel management demonstrated by Ropponen et al. [RL00]. The result also
showed similarities with the Wallance et al. [WK04, WKR04] findings on require-

130

www.manaraa.com

6 Evaluation

ments, user and complexity risk dimensions. Procaccino et al. [PVOD02] study
result emphasize the factors related to the customer/user and requirements, such
as user involvement, realistic expectation, complete and accurate requirements,
and well defined project scope which highly influence the project success. Lin-
berg [Lin99] also summarized factors like effective leaders, technologically realistic
requirements and realistic schedule and effort estimation relevant for the project
success. Our study result partially matches with these findings.

In the case study, PM realized the need of risk management and himself is assigned
as the main authority for the task. However practitioner’s are lack of motivated
to implement the complete risk management process. The interview responses
summarize a large number of risk factors from the project. A recent survey study
result showed , that intangible benefit, lack of resource, too many risks to control
are the main perceived barriers by the experienced project manager to a successful
implementation of software risk management [OG09]. Nyfjord et al. [NKM08] and
Kwak et al. [KS04] emphasize the organizational problems, such as variation of
risk perception by different roles, lack of competence and process problems, such
as lack of plan and coordination are additional barriers besides resource problems
to integrate risk management into development. We observed that formal risk
management practice was missing in Domain Tech. However, implementation of
GSRM and its result certainly advocate for a detailed risk management practice in
the upcoming projects. Some of the important factors from the other studies are
not mentioned by the present study, such as no planning or inadequate planning,
lack of management support, problems related to the development process and
development team. Several risk factors which seem to have no or partial match
compared to the other studies, such as user unwillingness to provide information
and sign the interview document, bureaucracy nature of the organization, political
biasness, numerous change/update requests, errors in contracts, training for large
number of users and over promise. These factors dominate in our case and mostly
originate from the user context.

6.4.5 Lessons Learned

There are several lessons that we have learned from this empirical study by em-
ploying GSRM into the software development project. This section provides a dis-
cussion of the lessons learned from this case study context.

6.4.5.1 Usefulness of the GSRM

The goal driven approach for risk management is beneficial during the early de-
velopment. The goals make it easy to communicate with the users, project spon-
sors and development team members. The main users of the running project were
government officials who do not have adequate knowledge about the purpose of
automation due to lack of IT competence. Goals ease to understand the stakehold-
ers’ expectation and elaborate the risks which obstruct the goals. The integration of
risk management into requirements engineering from the running project context
facilitates to consider obstacles related to the budget, schedule,requirements , user
training, user involvement, vendor reputation and user satisfaction even before
the final acceptance of the requirements specification.

Based on the open questions responses, PM and practitioners appreciated the in-
tegration of risk management into requirements engineering. It provides them
with early warnings about the problems existing in the project. The process and
techniques of GSRM perceived as understandable and reasonably applicable. The

131

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

explicit integration of risk management activities enforces project manager to al-
locate schedule for risk management and incorporate development team mem-
bers to take an active part in the risk management activities. The project members
gained knowledge about the possible risks and expressed their views to control
the risks. The component-element-factor hierarchy allows to systematically iden-
tify and categorize goals and risk factors. Techniques, such as closed question and
brainstorming session for risk identification, goal-risk model, causal relationship
model, guidelines to assess and treat risks are treated as comprehensive. The iden-
tification and modeling of goals and risk factors and their visual representation
facilitates to increase the understanding and communication about the risk. How-
ever this part consumed the highest effort, hence large number of goals makes
GSRM more complex.

Two kick-off workshops and five brainstorming sessions each approximately 4 and
6 hours and 14 interviews (2 hours for the closed questions by the practitioner
and more than 2 hours and 30 minutes by the users, 1 hour and 30 minutes for
open questions) were used to implement GSRM. Furthermore, student members
analyzed the project documents, in particular, artifacts like initial specification,
nature of change requests, detailed requirements specification, project scope and
success criteria as input data for risk management. They also compiled the in-
terview responses to identify risks and to obtain feedback about GSRM. It took
approximately four complete working days for the analysis. The brainstorming
session also considered requirements engineering activities, such as analysis of the
requirements documents and user change requests. It is feasible to identify the
goals and risk factors apart from the requirements elicitation and analysis activi-
ties within the same session. It allows GSRM to be well integrated into the early
software development. Goals and risks identification and modeling consumes the
highest effort and project complexity and large number of goals increases the over-
all risk management effort. A total of approximately 16% effort of initial deliver-
able phase including the student memebers effort used for risk management. But
the effort estimation excludes the risk monitor activity.

There exist several overheads by GSRM related to the scalability issues of the over-
all approach. First, when the project focuses on large number of goals, then GSRM
needs more effort. Second, constructing a casual relationship model through BBN
is complex undertaking specifically when several risk factors are considered as in-
termediate nodes, which increase the size of probability density table. Third, risk
monitoring activity was not properly performed at later stages due to the pressure
increased to handle the user changes. Fourth, it is difficult to answer some of the
closed questions in particular quantify the answers into three different scales at an
early development stage. Among the 7 risk events and 15 associated risk factors
only 3 risk events and 11 risk factors are fully or partially controlled through 8
potential countermeasures. However, GSRM fails to control budget and schedule
overruns which obstruct one of the main project goals. This is because most of
the risk factors originated from the user perspectives which are beyond the project
manager control. It is important to have the risk factors under the control of project
manager and project environment. Some risk factors cannot be controlled, for in-
stance requirements changes, user motivation for the system-to-be and inadequate
user knowledge. But some are fully or partially controlled, such as high training
cost, overall budget overruns, erroneous requirements, users participation and de-
tailed system specification.

132

www.manaraa.com

6 Evaluation

6.4.5.2 Overall Observation

GSRM is suitable for any complex project. Our previous case study focused on a
medium size project. But this case study project is complex, where GSRM is well-
integrated to identify and control the software risks. The replication of the case
study about the same method in a varying context allows generalizing the main
findings of GSRM. In both cases, project manger agreed that by GSRM it is possible
to identify and tackle the problems in a structured way from the beginning of the
development.

In the previous case study [IH10], we considered a set of hypothesis, i.e., i) risk
management activities can be well integrated in requirements engineering, ii)
GSRM contributes to manages risk by considering a holistic perspective and iii)
GSRM effectively reduces errors from the elicited requirements. The goals were
attained and risk factors were mostly mitigated and hypothesis were confirmed in
the previous case study. The current study project is complex and highly risky. The
user factors are the central sources of risks. One of the main goals, i.e., complete
project in estimated budget and schedule was not achieved. In the present study,
risk management sessions include RE activities and contribute to control require-
ments errors and other risk factors from both technical and non-technical issues.
But not all requirements problems are solved as well as the project suffered budget
and schedule overruns.

By analyzing the observations from the running study, risk management can be
well integrated into requirements engineering and GSRM focuses on the holistic
view of the risk management. The process and artifact oriented view allow to inte-
grate risk management into requirements engineering. Software projects generally
do not have a risk manager except large or complex projects. We have seen that
a project manager or requirements engineer having basic knowledge of risk man-
agement are able to perform the GSRM activities. Our observation is, that when
factors are beyond the control of the project manager and development environ-
ment then it is difficult to control the risk. The studied project failed to complete
within the estimated budget and schedule. The PM later on by a conference call
stated, “we suffered approximately 25% budget overruns even though we mitigated some
of the risk factors and considered 15% acceptable limits for the budget overruns. This
amount is huge for us compared to our other completed projects. As the users were the
government officials and project funded by the UNDP, there was no room to obtain extra
budget. Our management considered it as a loss project. But we have obtained the next
work order from the planning ministry which implies that the government officials are
happy with our performance ”. PM believed that without the integration of risk man-
agement budget overruns could be even more, government officials would not be
consider to significantly participate in the project and requirement errors could
not be controlled from the early stage. The project is planned to be deployed in
ministry campus and selected users are currently under training. As Domain Tech
already obtained the phase 2 of the project which includes three more modules in
the existing application software . Therefore one goal is attained i.e., obtain good
reputation. The upcoming project concerns annual development program, project
and foreign aid monitor system of the planning ministry and maintenance. The
management hope that phase 2 would compensate the loss suffered by the current
development.

Our further observation is , that it is not necessary to always consider budget and
schedule factors at the highest priority. Software development project is a com-
plex undertaking. There exist other issues, such as requirements, users, change
management, user satisfaction and system usage which directly or indirectly in-
fluence budget and schedule constraints. These factors need early attention in the

133

www.manaraa.com

6.4 Study 3: Implementation and evaluation of a goal-driven risk management
model

development. Early determination of the nature of project riskiness is very effec-
tive to plan the risk management activities. Current study concluded that project
scope affects all dimension of risks but for high risk project risks associates with
requirements specification, users, change management, project execution are more
obvious.

6.4.6 Study Validity

Case studies are generally criticized for being biased, less valuable or unable to
generalize the findings [RH09]. Threats to case studies are related to the difficul-
ties of collecting reliable results and on generalizing the findings. We systemat-
ically planed the study, considered study goals and addressed the issues related
to the threat from the beginning of the study. Data is collected and analyzed in a
consistent way from multiple sources to overcome the study validity threats .

6.4.6.1 Internal Validity

We try to reduce the expectation bias on the case study result. The interview re-
sponses are commonly analyzed in the brainstorming session by the risk manage-
ment team. None of the principle investigators of GSRM and related research was
directly involved in the case study which aims to reduce the bias of the findings.
Data was collected not only from the development team but also from the customer
and project sponsor representatives. Furthermore, project documents are also an-
alyzed to understand the goals and risk factors. Therefore, several sources were
used to collect data and this limits the effects of one interpretations of one single
data source. Interview response and result of the project document inspection was
further analyzed and discussed in the brainstorming sessions. The PM and other
team members were not fully motivated for a formal risk management practice in
the project. This attitude was changed later on by observing the outcome of GSRM
activities. This means that the GSRM approach demonstrated the importance of
risk management and quickly produced visual and critical insight. Maturation ef-
fect also intimidates the internal validity in particular when the participants react
differently about the perception on risk during the course of development. Activ-
ities of GSRM took place at the requirement engineering phase, the threat can not
significantly affect our study.

6.4.6.2 External Validity

The case study context is located in a single geographical region, there is a possi-
bility of a cultural bias. Our findings are from multiple data sources which support
for the stronger conclusions. The study result is compared with other results from
the literature to generalize our findings. The comparisons confirmed several com-
monalities in terms of goals and risk factors, however there are also some unique
factors from the local context. Therefore, factors related to goals and risks are in-
fluenced by the local context. We provide additional insight about the impact of
risk management in software development project.

6.4.6.3 Construct Validity

We considered benefits and limitations of the GSRM and correctly measured quan-
titative metrics like risk management effort to support the case study objective.

134

www.manaraa.com

6 Evaluation

The quality of the case study questionnaires was improved by following the feed-
back from our previous study. The participants answered most of the questions
apart from some which are observed as difficult at an early stage. The threat of
the questions being the wrong ones to ask was mitigated. The project managers
and development team members have adequate experience on several software
development projects. On the other hand, user representatives have also long ex-
perience in the government service. The student members conducted a kick-off
workshop to the practitioners and explained details about the interview purpose
to the users. We believe that the participants understood the terms being used.

6.4.7 Case Study Conclusion

GSRM is a practical approach in an industrial context to control software risks with
a reasonable effort. It provides a rational systematic framework by considering
both subjective and objective analysis and involves all concerned stakeholders to
assess and manage software development risks. The goal-driven risk management
approach is well integrated into requirements engineering so that factors related
to software risks can be handled event before analyzing the requirements. The
study results confirm our findings from the previous study. We believe this study
is useful to improve GSRM and to inform and motivate practitioners about the
effectiveness of integrating goal-driven risk management activities from the early
development phase.

6.5 Goal-Risk Taxonomy

Goal &
Risks

Process

Project
execution

Product

Human

Organization

Component Element Factor

Planning &
control

…

Tool support

Development

Compliance

Specification

Maintenance

Practitioner

Management
support

Stability

Resuorce

…
…

…

Budget

Complexity

…

Activities

Method

…

Business

Requirements

…

Motivation

Knowledge

…

Structure

Policies

…

Figure 6.8: Schematic View of Goal-risk Taxonomy

This section provides an overview of the goal-risk taxonomy for a software project.
We mainly follow fundamental concept of GSRM, empirical investigation results of
this research and published literature on software success and risk factors to derive
this taxonomy. The taxonomy will be used in GSRM activities to systematically
identify, categorize and model goals and obstacles. The component-element-factor

135

www.manaraa.com

6.5 Goal-Risk Taxonomy

hierarchy (i.e. stated in chapter 4) used as main foundation concept to organize the
taxonomy. The closed questions (i.e., included in appendix 1) and requirements
errors checklist (i.e., included in appendix 3) are considered as a part of this tax-
onomy to identify the risk factors. The hierarchy contains five components. They
are:
• Project execution: This component refers to the issues associated with the

project planning and control, budget, schedule, project scope, complexity,
tool support and overall inherent riskiness nature of the project.

• Process: This component refers to the issues associated with the activities
and methods related to the software development and risk management.

• Product: This component refers to the issues associated with the product arti-
facts such as requirements specification, time-to-market, requirements faults,
quality and product operation and maintenance.

• Human: This component refers to the issues associated with the project
stakeholders, i.e., practitioner, customer/user, management and overall team
work in the project.

• Environment: This component refers to the issues associated with the overall
internal and external organizational environment in which a software project
takes place.

Individual component refines into element and factors to provide lowest level ab-
straction of the component. Figure 6.8 shows a schematic view of the goal-risk
taxonomy.
Figure 6.9 elaborates Figure 6.8 by showing which characteristics of the devel-
opment components and its surrounding environment do the project managers
should consider when assessing and managing goals and risks. These characteris-
tics are influential issues of the project whose satisfaction increases the likelihood
of project success and vice versa. We identify the goals and risk factors of these
components to construct the goal-risk taxonomy. The individual goal and risk tax-
onomy are shown in Figure 6.10 and Figure 6.11.

136

www.manaraa.com

6 Evaluation

Goal-risk Taxonomy
Project execution Process Product Human Environment
Planning & control
Estimation
Budget
Deliverables
Monitor
Review
Variation
Roles & responsibilities
Users groups
Technical complexity
Complex task
External links
Project size
Volume of code
PM skill
Change management
Project scope
Goals
Success criteria
Boundary
Business value
Reusability
Innovation
ROI
Inherent risks
Tool support
Development
Maintenance
Project execution

Development
Process
Methods
Models
Level of abstraction
Mapping
Roles
Inputs
Artifacts
Risk management
Budget
Resource
Motivation
Integration
Consistency
Concurrency
Synchronization
Traceability
Compliance
Performance
Improvement
Audit

Specification
Business specification
System vision
System req.
Integrational req.
Organizational req.
Time-to-market
Customer market
Competitor analysis
Consumer analysis
Quality
QA plan
Performance
Usability
Security properties
Security threats
Privacy properties
Privacy harms
Safety properties
Critical hazards
System failure
User manual
Testing
Test specification
Test cases
Requirements faults
Ambiguity, incorrect
untraceable, infeasible
unstable & incomplete
Operation
Plan
Budget
Acceptance criteria
Training
Technical manual
Operational manual
Synchronization
User’s motivation
Installation
Migration
Maintenance
Budget
Scope
Acceptance criteria
Deliverables
Versioning
System complexity
Consistency
Performance
Testing
Documentation

Practitioner
Skill
Knowledge
Motivation
Commitment
Assumption
Availability
Training
User expectations
Customer/user
Involvement
Collaboration
User groups
Knowledge
IT competence
Business env.
Confidence
Expectations
Feedback
Team work
Team structure
Knowledge
Performance
Coordination
Conflicts
Users’ feedback
Management
Leadership
Support
Commitment
Business strategy
Conflict
Confidence level
Review
Customer focus
Improvement

Organization
stability
Structure
Reputation
Process
Change
Control
Policies
Project support
Training
Culture
Political influence
Resource
Development
Infrastructure

Figure 6.9: Detailed Properties of Goal-risk Taxonomy

137

www.manaraa.com

6.5 Goal-Risk Taxonomy

Goals
Project execution Process Product Human Environment
Planning & control
Well planned
Realistic estimation
Realistic deliverables
Clear milestones
Maintain estimated
budget
Maintain estimated
schedule
Periodic monitor
Minimum variation
Clear roles
All user groups detailed
Control complexity
Mature technology
Technically feasible
Effective PM skill
Effective change
management
Project scope
Clearly defined goals,
success criteria &
boundary
Clear business value
Minimum scope creep
Reusability
Innovation
Economically feasible
Control inherent risks
Tool support
Correct tools

Development
Well documented
Controlled process
Effective methods
Correct methods
Model abstraction
Precise mapping
Realistic modeling
Clear roles
Consistent tasks
Complete artifacts
Risk management
Strong RM
Motivation for RM
Resource allocation
Clear roles
Consistent tasks
Complete artifacts
Process integration
Compliance
Productive process
Periodic audit
Review process
Continual-
improvement

Specification
Clear business-
specification
Complete system vision
Realistic requirements
Time-to-market
Competitor analysis
Consumer analysis
Unique features
Consumer satisfaction
Quality
Complete QA plan
Quality product
Usable product
Security threat analysis
Accurate security level
Privacy harm analysis
Accurate privacy level
Safety hazard analysis
Accurate safety level
Testing
Complete test plan
Possible test cases
Addressing test results
Requirements faults
Reduce req. errors
Unambiguous , correct
traceable, feasible,
frozen, & complete req.
Operation
Complete plan
Satisfy acceptance
criteria
Proper documentation
Competence training
Training budget
Meeting acceptance
User’s high capability
Proper installation
Complete migration
Successful use
Maintenance
Adequate budget
Goals
Clear acceptance
criteria
Deliverables
Minimize volatility
Minimize complexity
Version control
Retested components
Updated documentation

Practitioner
Skill & experienced
Adequate project-
domain knowledge
High motivation
Correct assumption
Staff availability
Proper trained
Familiar with
development env.
Meeting user needs
Customer/user
Active involvement
Strong collaboration
Key users
Adequate project
knowledge
High IT competence
Stable business env.
User satisfaction
Motivation
Realistic expectation
Frequent feedback
Team work
Diverse team
Adequate knowledge
Productive team
Strong coordination
Minimum conflicts
Effective
communication
Addressing feedback
User confidence on
project team
Management
Effective leaders
Adequate support
High commitment
Strong business
strategy
Minimum conflict
Customer confidence
on management
Periodic review
Customer focus
Continual
improvement

Organization
Stable structure
High reputation
Control processes
Effective policies
Appropriate change
Subcontractor control
Adequate training
Less political biased
Resource
Adequate
development &
communication
facilities

 Figure 6.10: Goal Taxonomy

138

www.manaraa.com

6 Evaluation

Risks

Project execution Process Product Human Environment
Planning & control
Inadequate plan
Poor control
Unrealistic estimation
Unrealistic deliverables
Over/under estimation
Hidden factors
Budget overruns
Schedule overruns
Irregular monitor
No tracking
High variation
Unclear roles
Large user groups
High complex task
Technical complexity
Immature technology
Large no of external links
Complex interactions
Lack of PM skill
Ineffective change
management
Project scope
Unclear goals, success
criteria & boundary
Unclear business value
Errors in contract
Continuous scope creep
Significant increase of
scope
Lack of reusability
Economically infeasible
High risk project
Tool support
Incorrect tools

Development/ RM
Poor documented
Uncontrolled process
Ineffective methods
Wrong methods
Unrealistic modeling
Lack of abstraction
Imprecise mapping
Inconsistent activities
Poor RM
Lack of motivation for
RM
Lack of resource
Unclear artifacts
Unclear roles
Poor integration
Compliance
Unproductive process
Infrequent audit
Inadequate review
Infrequent-
improvement

Specification
Unclear business-
specification
Incomplete vision
Unrealistic req.
Time-to-market
Incomplete competitor
& consumer analysis
Consumer-
dissatisfaction
Quality
Incomplete QA plan
Poor quality product
Poor performance
Poor usability
Inadequate analysis of
security, privacy &
safety
Testing
Incomplete test plan
Inadequate test cases
Lack of focus on result
Requirements faults
Erroneous req.
Incorrect, infeasible,
inconsistent &
ambiguous req.
Numerous change
Incomplete system req.
Operation
Incomplete plan
Poor documentation
Ineffective training
Lack of budget
User’s incapability
Lack of user’s support
Deployment problems
Incomplete migration
Poor system use
Maintenance
Lack of budget
Unclear goals
Unclear acceptance
criteria
Missing deliverables
High volatility
High complexity
Lack of versioning
Lack of testing
Poor documentation

Practitioner
Lack of skill
lack of domain
knowledge
Wrong assumption
lack of motivation
Unavailable staff
Inadequately trained
Unfamiliar
development env.
Fail to add user needs
Customer/user
Passive involvement
Weak collaboration
Missing key users
Lack of knowledge
Low IT competence
Unrealistic expectation
User dissatisfaction
Unstable business env.
Lack of motivation
Numerous change
request
Inability to provide
project information
Poor feedback
Team work
Imbalanced team
Inadequate knowledge
Less productive team
Weak coordination
Frequent conflicts
Low productivity
Miscommunication
Lack of coordination
Lack of skill
Infrequent feedback
Management
Ineffective leaders
Lack of commitment
Poor support
Immature business
strategy
Over promise
High rate of conflict
Lack of user confidence
Infrequent review
Lack of customer focus
Irregular improvement

Organization
Unstable structure
Low reputation
Lack of process-
control
Frequent change
Ineffective policies
Inadequate training
Lack of contractors’
control
Lack of distributed
sites’ control
Bureaucracy nature
Politically biased
 Resource
Inadequate
development facilities
Environment problems

Figure 6.11: Risk Taxonomy

139

www.manaraa.com

6.6 Empirical Studies Conclusions

6.6 Empirical Studies Conclusions

A total of 6 companies were involved for the survey and case studies. We would
like to thank Domain Tech [Dom], Spectrum Engineering and Consortium Lim-
ited [Spe] for supporting the case studies and Southtech Limited [Sou], ibacsbd
Limited [Iba], Pyxisnet Limited [Pyx] and Rasis Limited [Ras] for supporting the
survey. Our findings are that:
• It seems reasonable to start with goals for risk assessment and management.

Goals tightly link with the obstacle, allow to understand and model risk man-
agement and ease to communicate with management about the risks existing
in the project.

• The software development risk management needs to be initiated as early as
possible during the development. Risk management can be well integrated
into requirements engineering and facilitates to identify, assess, manage and
trace risks of the early development.

• GSRM is a practical approach for software development risk management. It
equally considers both technical and non-technical risks from a holistic per-
spective. Based on the project context, the GSRM process can be customized
for an effective risk management and well integrated into software devel-
opment. The component-element-factor hierarchy is systematically used to
identify and categorize goals and risk factors for any software development
project.

The empirical study result positively contributes about the impact of risk manage-
ment into software development projects. We hope this would motivate the project
stakeholders to include a comprehensive risk management practice in the software
projects.

140

www.manaraa.com

CHAPTER 7

Conclusion

Contents
7.1 Outcome of the Research . 141
7.2 Conclusions about Research Questions 143
7.3 Conclusions about Empirical Study Results 144
7.4 Limitations of the GSRM . 146
7.5 Future Research . 148
7.6 General Conclusions . 149

Every software project is unique and undertakes multidimensional tasks during
the course of development, deployment and maintenance. Early risk management
is always effective to meet the project goals and to produce a more reliable and
dependable product. A project combines knowledge and technology and contains
both generic and project specific risks at every phase of the development, which
have an extremely high influence on the success. Several researches concluded that
a complete risk management process is rarely followed. A system under develop-
ment is merely analyzed from the technical perspective and often non-technical
issues are overlooked. For instance, issues related to humans who develop and
use the product and organizational settings in which the system is developed and
deployed. Therefore, a systematic and easy to use risk management process from
a holistic perspective and its explicit integration at an early development stage
is required to ensure an effective risk management practice. We believe that this
research work contributes in this direction. The motivation for this work is de-
rived from literature review and our own experience from software development
projects.

7.1 Outcome of the Research

By extensive investigation of the state of the art, we summarized that both indus-
try and academic emphasize to initiate the risk management as early as possible.
But a detailed guideline is still missing to integrate risk management activities into
the early development phase by considering a holistic view. A number of survey

141

www.manaraa.com

7.1 Outcome of the Research

studies focus to identify risk factors of software projects. However, relatively a lit-
tle effort has gone into assessing the overall impact of the risk management. This
research contributes to explicitly integrate risk management activities into require-
ments engineering phase, links project specific goals and risk factors and empiri-
cally evaluates the impact of risk management method into a software project. It
provides a structured way to look at the project and problems associated with the
project. We consider a goal-driven approach for the software development risk
management. It helps to rationalize and justify the risks and their treatment in a
software development project. Natural language is used to represent the goals and
risk factors by following the KAOS template. This allows to easily understand the
goals and risk factors. This goal-driven approach, in particular, goal modeling for
risk management is considered to be beneficial by the participants involved in the
empirical study.
The development components and their refinement into elements and factors pro-
vide a comprehensive view of goals and risk factors from a holistic perspective.
GSRM allows risk management in a multi-dimensional setting, where goals from
the project stakeholders, development components and project success indicators
are simultaneously considered. This also eases to identify the risk factors and to
estimate their impacts for early mitigation. In a large project, it is sensible to com-
pletely implement the model for software development risk management. We pre-
cisely elaborate the underlying activities, methods and roles of the goal-driven
risk management process model. The process explicitly integrates GSRM into re-
quirements engineering. Artifact oriented view is considered to construct the risk
specification and its associated concepts such as goals, risk status, goal-risk model
and causal relationship model. Artifact view supports to precisely understand
the work products from the risk management domain and links them with the
requirements engineering artifacts. All artifact concepts and attributes of the risk
specification are illustrated by the GSRM. This research develops a goal-risk taxon-
omy and constructs a questionnaire consisting of 200 closed questions which are
arranged by following the component-element-factor hierarchy and a requirements
errors checklist. The purpose of the closed questions and of the checklist is to
identify the risk factors and requirements errors. Our empirical investigation re-
sult shows positive impact of risk management on the software project’s successful
outcome. This conclusion identified some unique finding from the local context.
Thus novelty of the dissertation consider:
• Introduction of a goal-driven approach for software risk management;
• Applicability of risk management practice into requirements engineering;
• Impact of risk management on a software project;
• Identification of goals, risk factors and events and construction of a goal-risk

taxonomy for software projects.
We believe the study results bias the project practitioners to integrate an effec-
tive risk management practice within the early development stage. GSRM is an
excellent project management tool that makes aware of the pitfalls exist in a soft-
ware project. Our study focused on completely different cultural and environ-
mental context compared to other study results in the literature. We have chosen
Bangladesh as a representative of a developing countries with limited IT infras-
tructure facilities. But in Bangladesh offshore and local software development and
use market is rapidly expanding through significant increase in investments in re-
cent years. E.g., the European Union has ranked Bangladesh as one of the top 20
outsourcing destinations in the world. This type of study is the first of its kind in
Bangladesh and will effectively support to enhance the software industry.

142

www.manaraa.com

7 Conclusion

7.2 Conclusions about Research Questions

We considered four research questions at the beginning of the research. Here we
provide a summary response of the research questions after the course of research
work and empirical investigation.

7.2.1 Research Questions 1 and 2

• Question 1: Can risk management be integrated in the early phase of software
development projects?

• Question 2: What is the effect of a goal-driven approach on the software risk
management?

These two questions mainly consider the goal-driven approach for risk manage-
ment and its integration into early development phase. The results and discussion
of the questions reveal that risk management is effectively integrated into early
development phase specifically within requirements engineering phase. And the
goal-driven approach is well fitted for software development risk management.
We consider integration points of requirements engineering and risk management.
The integration points focus on activities, methods, roles and responsibilities, re-
sulting artifacts and their dependencies. For instance, similar techniques can be
used to elicit the goals, requirements and risks. When project considers workshops
or brainstorming sessions with the key users or stakeholders to identify their ex-
pectations and system specification, the same session can be used to identify goals
and risk factors. Project managers and requirement engineers are able to perform
risk management activities with having some basic knowledge of risk manage-
ment. Requirements artifact concepts such as business goals and specification,
system vision, system, integrational and organizational requirements are consid-
ered as input for the risk identification. Project specific goals, risk priority and risk
status support to refine the requirements effectively. The results of the case stud-
ies showed, that GSRM can be well integrated into requirements engineering and
the goal-driven approach is effective to realize this integration. There are indeed
strong dependencies among requirements and risk artifacts. GSRM contributes to
reduce the errors existing in the requirements specification. The explicit integra-
tion of risk management at early development facilitates to identify and control the
critical development issues such as practitioner domain knowledge, extensive user
involvement, team work, resource availability, realistic estimation, time-to-market
and product deployment and training plan even before elicitating the system spec-
ification.
The goal-driven risk management method is feasible in practice even when the
project is in tight schedule and budget pressure, because a project in general con-
tains goals and expectation from users, sponsors, practitioners and development
component. GSRM maps these goals with project success indicators. Project man-
agers and practitioners easily learn and use the GSRM, the only prerequisite is
the basic knowledge of goal modeling and risk management. A short training is
sufficient to provide a basic understanding of GSRM and project managers and
requirement engineers generally have the basic knowledge. We obtained similar
results from both of the case studies of different project contexts w.r.t. research
questions 1 and 2 . The risk specification artifacts were well documented. The
project contexts were not similar but the main focus was to develop information
systems, one for an offshore customer and the other for a local government min-
istry customer. The project practitioners who were involved into implementing
GSRM were also satisfied with the resulting set of artifacts. The questionnaires

143

www.manaraa.com

7.3 Conclusions about Empirical Study Results

by following component-element-factor hierarchy to identify the risk factors and
a brainstorming session to identify the goals and risk factors were appreciated by
the practitioners. The process involved and the artifacts produced by GSRM are
consistent. The perception of risks always varies from individual to individual, as
risk estimation is subjective and requires expert judgment. This inherent nature of
risk makes it difficult to obtain precise risk estimation results and complicates the
risk management method.

7.2.2 Research Questions 3 and 4

• Question 3: What are the main goals of early development contributing to a suc-
cessful project outcome?

• Question 4: How can the software development risks be assessed and managed from
a holistic perspective to satisfy the goals?

The analysis of research question 3 and 4 focuses on identifying goals and risk fac-
tors in software development project as well as assess and manage the identified
risks to attain the goals. We follow the performed survey and case studies results
(i.e. details in the next section) to address these two research questions. In general
several goals were identified from the studies. Among them, some were generic
and the others were project specific. Project goals consider various dimensions de-
pending on the context from concrete economic benefit like return of investment
to subjective value like user satisfaction, system use, reputation and knowledge
management. We follow project documents, user operating environment, closed
questions along with brainstorming sessions to identify and assess goals and risk
factors. Initially raw risk factors are identified which obstruct the goals by follow-
ing the closed questions. These factors are refined to risk events by following the
causal relationship model. GSRM provides a general guideline apart from practi-
tioners expertise to estimate risks. The guideline states which factors are in general
causally linked to risk events and impact of an individual risk event on the goals
depending on the influential risk factors and project context. Project riskiness na-
ture is also important in this context so that inherent factors responsible to high
a risk project get more attention. For instance in a high risk project, factors re-
lated to requirements, user and project execution are more noticeable. The project
scope affects both the high and low risk projects. We advocate to determine the
riskiness nature of the project during the pre-project planning phase so that risk
management can effectively contribute for a successful project outcome.

7.3 Conclusions about Empirical Study Results

Survey Study A survey was performed to identify the possible goals and risk
factors of offshore software development projects. The survey participants were
experienced practitioners. The average experience of the participants was more
than 2.5 years and they had multiple roles like director, developer, project leader,
software engineer, architect and tester. The result showed, that the top 3 priori-
tized goals were: 1) attain project execution factors (sub-goals: stay in budget, at-
tain product quality), 2) manage human factors (sub-goals: quality and relevance
of staff, effective communication and coordination, proper management direction
and support, effective client involvement) and 3) manage organizational factors
(sub-goals: stability of the organization, adequacy of the development facilities
and resources, effective risk culture). The result outlined, that passive user involve-
ment, unstable and ambiguous requirements, lack of communication and coordi-
nation and lack of commitment and capability among management were the very

144

www.manaraa.com

7 Conclusion

important risk factors. These risk factors were also emphasized by other published
risk factors in the literature. The survey concluded that security issues, legal dis-
putes and time difference were not creating any problems even though customers
were located in different countries. Participants observed that they have similar
technical expertise as the user. However, obtaining the project work order despite
marginal profits is an endemic problem by all vendors and this some times affects
the employees’ in particular related to their job satisfaction, motivation and pro-
ductivity. As a consequence, employees’ absence is a common problem in the local
context.

Case Study The two case studies were from two different contexts, where we
attempted to implement GSRM into ongoing software development projects. The
main purpose of the case studies is to evaluate the impact of risk management
in particular GSRM into software development projects. Kick-off workshops, in-
terviews and brainstorming sessions were set up to perform the case study. Our
study also supports action research as the risk management results effectively use
to mitigate the identified risks in the project.
The first study was an offshore project where GSRM was not fully implemented
due to tight schedule pressure. Several goals were identified such as improve
realistic budget and schedule estimation, clear roles and responsibilities, reduce
errors from requirements, improve team members competency and reduce cus-
tomer/user dissatisfaction. The case study participants identified and analyzed
several risk factors w.r.t. project context. The project was inherently a low risk
project because project practitioners have done similar projects before which al-
lowed to reuse their knowledge. But still there are some challenges involved in
the projects. The prioritized risk factors were: under-specified, unstable, incom-
plete requirements, technical complexity, unclear business process, inadequate
knowledge of the practitioner and customer/user passive involvement. These
risk factors influenced risk events such as erroneous requirements, overall project
complexity, customer/user dissatisfaction and budget and schedule overruns.
Risk factors were mainly taken from requirements and user perspectives. The
project manager agreed that integrating GSRM into the early development cer-
tainly helped them to identify and control these issues. The case study concluded,
that there are indeed strong dependencies among requirements engineering and
risk management process and artifacts.
In the second case study, GSRM was evaluated once again but in a different project
context to generalize our findings. Here the project manager felt the importance of
GSRM as the project was challenging and the development team treated the project
as a high risk project. The customer was the planning ministry, the project sponsor
was the aid agency UNDP and users were the government employees. GSRM was
fully implemented in this study. The top four goals of the project are: complete
project in estimated budget and schedule, complete user’s training, obtain posi-
tive reputation and generalize the application. The vendor management’s future
business vision was extremely important in this case to obtain work order of simi-
lar application context, because recently local government decided to digitalize all
its ministries operational activities. The vendor’s management over-promised and
agreed to accept any change during the course of development. This contractual
error provoked numerous change requests from the users. More over users were
very passive and unable to provide complete information about the system. The
team also had lack of experience to handle the government officials. As a conse-
quence, the estimated schedule exceeded and the project suffered from 30% bud-
get overruns. Although GSRM was implemented, some goals were not attained
and not all risk factors were controlled. But the vendor succeeded to keep high

145

www.manaraa.com

7.4 Limitations of the GSRM

reputation which rewards them by obtaining the next work order of the planning
ministry.
We have several observations and lessons learned from the case studies. Deter-
mining the riskiness nature of the project before initiating the risk management
activities is very useful for an effective risk management practice. It helps us to be
aware of the problematic factors from the very beginning of the project. Riskiness
nature of the project supports to define the risk management scope and to plan and
tailor activities for the GSRM. The goal-risk and causal relationship model ease to
understand and communicate risk information with the key project stakeholders.
More goals provide more interactions among the development components. A
software development project can not focus on all the identified goals, hence goal
prioritization is essentially based on the project context, complexity, riskiness na-
ture, customer expectation and practitioners expertise. Goal and risk identification
and analysis is the most critical part of the software risk management. Risks which
oppose the prioritized goals need immediate attention and GSRM allows to handle
these risks from the early development. In the first case study, the project manager
was not really motivated about a formal risk management practice. At the end in
both cases, project managers observed that GSRM was able to identify problems
and tackle the problems from the beginning of the project. We have also noticed
that no additional activities or artifacts were required for the risk management.
The proposed goal-driven risk management model is complete in a sense that it
adequately handles all goals and risks associated in the project. Requirement prob-
lems were the top prioritized software risk and mainly due to the factors related to
human perspective such as passive involvement, lack of knowledge and numer-
ous change requests. Some factors are unique and dominating in the local context
such as contractual problems, bureaucracy nature of a government organization,
marginal profit and over-promising tendency to win the work order and to keep
high reputation.
We conclude that it is not always necessary to rank budget and schedule goals and
risk factors at the highest priority for the risk management. Project context spe-
cific factors must need adequate attention and every factor directly or indirectly
relates to the budget and schedule. E.g., requirements problems in the first study
and numerous change requests, inadequate knowledge, contractual error in the
second study. Controlling these factors can have a significant impact on the ability
to meet the budget and schedule targets. Some projects are carried out to gather
knowledge, experience or to obtain high reputation for the future business ben-
efit. A project commonly contains a large number of risk factors and goals and
project managers are not always interested to consider all of them. Only the top
ten or twenty risk factors and high prioritized goals need initial attention. Risk fac-
tors are causally linked with each other and responsible for the risk event. Hence
controlling the top risk factors certainly contributes to minimize the impact of the
other causally linked risk factors. Early consideration of risk management activ-
ities is very effective for projects of any size. The goal-driven approach for risk
management and its explicit integration into requirements engineering is well fit
in software projects.

7.4 Limitations of the GSRM

Several limitations were observed in the proposed framework. The observed limi-
tations are given below:
When it comes to consider scalability issues, then GSRM suffers in particular
within a large project context. A large scale software development project con-

146

www.manaraa.com

7 Conclusion

tains a huge number of goals, sub-goals and risk factors, which incur to increase
the complexity of the goal-driven risk management model. Goal refinement does
not provide any specific boundary for the level of abstraction. The more goals
are refined the more effective the risk assessment and treatment could be. It also
brings overhead for risk management. Projects may have thousand of require-
ments and it is not possible to identify errors by reviewing individual require-
ments. A large number of goals and risk factors carry considerable overhead in
constructing, maintaining and documenting the risk specification artifact. Hence
it is not always feasible to construct the model for every risk event, especially for
projects with continuous time or budget pressure. Also creating and managing
detailed textual representation about the risk artifacts requires extra effort. There-
fore, the effort of using GSRM seems to be higher for a large project context. Even
if the project size is medium or small but schedule pressure is the highest priority,
then project team members might not have the opportunity to detect and resolve
every risk.

GSRM also needs to be tailored based on the project specific context. We advo-
cate to involve key project stakeholders and development team members to tailor
the risk management process. In particular, when risk initialization activities are
carried out to determine the risk management scope and to allocate schedules and
resources. Our observation through the empirical investigation was that early de-
termination of the project riskiness guides to define the risk management scope
and plan for risk management activities. More study is required to establish a link
between project riskiness with GSRM. Individual perception about the risk estima-
tion also varies a lot. One can overestimate a risk while underestimating another.
This affects the actual result of the risk management , in particular to select the
treatment action for the risk mitigation. Furthermore, there exist many risks that
can not be avoided or confined. These risks should be mitigated or monitored
despite of budget and schedule constraints.

During the development phase, uncertainties critical to success unfold as the soft-
ware project proceeds. GSRM systematically models these uncertainties through
the Bayesian Belief Network (BBN). But risk estimation is not trivial and BBN
looks at the relationship of these components. BBN constructs a causal relationship
model among risk factors and events and their impact on the goals. Computation
in BBN is complex if risk factors or events play the role of intermediate nodes. It
is difficult to manage the probability density table of BBN for multiple intermedi-
ate levels. This makes the whole estimation complex which is highly undesirable
from the industry point of view for an effective and comprehensive risk manage-
ment practice. One may also argue that risk estimation, specifically risk impact
to the goal, is not precise due to common guidelines and practitioners’ subjective
judgment. However, as stated highly precision is not always possible but complex
estimation can make the practitioners reluctant for a comprehensive risk manage-
ment practice. At early development stage, sometimes adequate information is not
available to judge some risk factors or to determine the risk threshold value. But
we need proper implementation and monitoring of the selected control actions.
Otherwise, risk management would not be effective for the software development
project.

In terms of adaptability, the method is successfully employed in different software
development projects. We were only able to completely implement the GSRM into
one software development project, i.e., the project for the local government min-
istry. Both case study projects were the development of an information system.
Therefore, adaptability was not fully proved. The studies were from the same ge-
ographical territory and cultural bias may exist. Internal validity for the first case
study was not fully proved. We tried to compare our findings with the existing

147

www.manaraa.com

7.5 Future Research

study results in the literature to generalize our findings. The comparison results
give us positive similarities and some unique findings.

7.5 Future Research

GSRM allows the early identification of project specific goals, the break-down of
the identified goals into sub-goals and the identification of project risks and strate-
gies to deal with these risks. The biggest advantage of GSRM is that it is easy to use,
can capture domain specific knowledge and experience, provide early feedback so
that the model can easily be evolved. The layer based abstraction for goal-driven
modeling approach is suitable for other domains such as safety critical systems,
security or privacy risk management, or applicable to any other goal-oriented un-
dertaking or business domain. However, several limitations have been observed
for the proposed approach. A specific guideline is required to tailor the model by
following the project specific context.
Another avenue of future research would be to use the past goals and risks data to
support the current risk analysis. In particular, how a risk resource repository can
be constructed, which can be used for risk analysis in the upcoming projects. This
allows reducing the overhead of implementing GSRM when the project is under
continuous schedule and budget pressure. We assume complete construction of
BBN and goal-risk model can effectively be reused by major or minor modification
to a similar project context. Reusability of the goal-driven risk management arti-
facts certainly increases the applicability of the overall approach. Two case studies
were done to empirically investigate GSRM. And both case study projects consid-
ered the development of an information system. Replicate case study is necessary
to another direction of future work where the validity of the result can be more
generalized and revised. A case study in a different domain such as safety or se-
curity would perfectly enhance the validity purpose.
During the course of software development goals and risks have evolved. We need
to carefully monitor the evolution so that prioritized goals and risks get immediate
and adequate attention. Our study results already mentioned that goal details
and goal-risk models facilitate to communicate with the management about the
uncertainties and risks that exist in the project. But a guideline is necessary for the
management to use the goal models. It also supports to decide which part of the
model is necessary for the management. GSRM links the goal model with BBN, a
detailed examination of the transformation of the goal model to BBN is necessary.
A comprehensive investigation of the goals certainly amplifies the contribution of
goal-driven approach for the software risk management.
In software projects, there exist always gaps between the project contract and tech-
nical specification, software development and the implementation, product’s out-
comes and the customers’ expectations and between product operation and main-
tenance. We need to systematically look at these gaps and pay attention to mini-
mize them. Some factors within the course of the software product life cycle such
as deployment, operation and maintenance issues do not get attention at an early
stage. But later these can cause real danger for the project. We define these as
unforeseen risks of the project. These unforeseen risks and gaps need further in-
vestigation. Future research can also consider a detailed study on continuous risk
monitor which address effectiveness of control action and evolution of goals and
risks. It supports to discard the control action for the future projects which may not
be effective in a running project. Risk management practice sometimes appears to
have lower priority. But risk management is an essential and effective practice for
a successful software project of any size. Credibility of risk management method

148

www.manaraa.com

7 Conclusion

and its integration in the decision making process need proper investigation. This
allows to create an awareness about risk management practice and its benefits in
the software projects.

7.6 General Conclusions

The significance of software is growing everyday as it becomes a major part of
enterprise business. At the same time, complexity of the software systems is also
increased tremendously. Therefore, building of high quality product in the shortest
possible time to satisfy the global market demand gives an enterprise a competi-
tive advantage. However, there exist uncertainties and risks at every stage of the
software product. These risks can have an extremely high influence on the success
of software projects. Making timely and well informed decision is important for
controlling the risks. We also need to convince the project stakeholders for a for-
mal risk management practice which can be tailored based on the project context.
This doctoral thesis contributes for a systematic and easy to use risk management
practice and enables risk management activities to be explicitly integrated into re-
quirements engineering phase. We believe that goal-driven software development
risk management model and its implementation have a strong impact on an effec-
tive risk management practice in the software engineering domain.

149

www.manaraa.com

7.6 General Conclusions

150

www.manaraa.com

APPENDIX A

Appendix A: Closed Questions

The purpose of this interview is to collect the states of the development components w.r.t
the running project where you are involved.

The collected information only used for the research entitled Software Develop-
ment Risk management Model-a goal-driven approach and to improve the running
project context by effective implementation of risk management result. In case if
you are not the best person to answer, please feel free to pass on this questionnaire
to other people in your organization. You are answering as an individual and we
will only use the information in aggregated form. Your name or other details will
not be mentioned if you want. Thanks a lot for your participation.

Project Execution

Project Planning and Control

(Q1) Are all project deliverables and related schedule realistically estimated &
agreed with the customer?
� No � Not fully realistic � Estimated & agreed

(Q2) Are the estimation factors like product size, code volume, practitioners’ ca-
pability, project constraints, complexity and reusability considered for the
estimation?
� Partially � Yes but not all � Yes

(Q3) Is the schedule pressure tight for the project?
� Yes � Yes but not for all deliverables � Backup up to certain threshold

(Q4) How do you estimate the development cost?
� Neither cost model nor experience � Only experience � Using suitable
cost model & experience

(Q5) Are the cost, schedule and effort estimation based on the previous project?
� No � Partially � Based on similar past project

151

www.manaraa.com

(Q6) How frequent are both estimated schedule and cost planned to be revised?
� Never � End of every deliverable � Monthly or more frequent basis

(Q7) Is there any monitoring facility that tracks estimated schedule, cost and ef-
fort?
� No � Yes but not all factors � Yes

(Q8) Up to now how much is the variation of the estimated schedule and cost
compared to the actual one (i.e. Over-estimate/under-estimate)?
� High � Minor � No

(Q9) Does the project contain a detailed change management plan during devel-
opment and after delivery?
� Partially during development � Partially for both development and
delivery � Yes

(Q10) Does the change analysis focus on major project goals and risks?
� No � Partially � Yes

(Q11) Does the project consider adequate project management method?
� No � Partially � Yes

(Q12) Are the essential technical issues (e.g. tools, language & hardware) identi-
fied, available and familiar for the project?
� Some � More than some � Yes all of them

(Q13) Does the project need any new technology/platform which is unfamiliar to
the development team?
� Yes � Not fully unfamiliar � No

(Q14) Does the project contain complex business processes / tasks which are un-
familiar to the development team?
� Yes � Partially � No

(Q15) Are the software under development expected to communicate with other
existing applications of the customer end?
� Yes � Partially � No

(Q16) Does the software under development need specific hardware?
� Yes � Partially � No

(Q17) What is the hardware dependency for the project?
� Highly platform dependent � Run on some platform � Independent

(Q18) What is the complexity of IO devices?
� High � Medium � Low

(Q19) What type of user interface management operation is used in the program?
� Complex (multimedia and virtual reality) � Several sets of different types
� Simple I/O forms

(Q20) What is the size of the project?
� Large � Medium � Small

(Q21) Are there large numbers of user groups involved during the development?
� Yes � Not very large group � No

(Q22) Will large numbers of user groups use the product?
� Yes � Medium size user groups � No

Project Scope

(Q23) Is the project context similar to some previous projects?
� No � To some extent � Yes

(Q24) Are the project goals identified and agreed with customer and practitioners?
� Some � More than some � Completely

152

www.manaraa.com

A Appendix A: Closed Questions

(Q25) Is the project success criteria realistic and achievable?
� Partially � Yes but not all � Yes

(Q26) Are the project boundary conditions clearly identified?
� No � Yes but Partially � Yes

(Q27) Is the project contract including terms and conditions approved and signed
by customer?
� No � Yes but Partially � Yes

(Q28) How risky is the project by considering scope, users, complexity, con-
straints, reusability, specification, resource, expertise and knowledge?

� High � Medium � Low

Tools Support

(Q29) Are the project execution tools for schedule, cost and effort estimation, re-
lease management and monitor identified and available for the project?
� Partially � More than Partially � Completely

(Q30) Are the project communication and collaboration tools identified and avail-
able for the project?
� Partially � More than Partially � Completely

(Q31) Are the project development and maintenance tools (i.e., modeling, require-
ments management, code generation, testing and documentation) identified
and available for the project?
� Partially � More than Partially � Completely

Process

Development Process

(Q32) Are there model based development methods planned to be used for the
project?
� No � Yes but partially � Yes

(Q33) Does documented development process exist for the project?
� Partially but not documented � Partially documented � Yes

(Q34) Does the development process support adequate activities, steps and meth-
ods?
� Partially � More than partially � Completely

(Q35) Do the activities and tasks clearly specify input and output of the individual
phase?
� No � Partially � Yes

(Q36) Is the goal modeling method planned to be used for the project?
� Not sure � Partially � Yes

(Q37) Are the current development processes suitable and adequate for the project?
� Partially � More than partially � Completely

(Q38) Are roles clearly defined for the individual task under an activity ?
� Partially with confusion � Partially � Completely without confusion

153

www.manaraa.com

(Q39) Does requirements engineering process explicitly consider customer/user
involvement?
� No � Partially � Yes

(Q40) Does requirements engineering process construct a complete specification
document for the project?
� No � Partially � Yes

(Q41) Does the architectural design include every subsystem and their interac-
tions?
� No � Partially � Yes

(Q42) Does the design construct a complete architectural and detailed design doc-
ument?
� No � Partially � Yes

(Q43) Is there any coding standard followed for the project?
� No � Partially � Yes

(Q44) Does the test plan consider project goals and requirements?
� No � Partially � Yes

Risk Management

(Q45) Does the project consider a formal risk management practice?
� No � Yes but partially � Yes

(Q46) Does a comprehensive risk management process exist for the project?
� No � Yes but very informal � Yes

(Q47) Are the risk management roles clearly identified and assigned?
� Partially � More than partially � Completely

(Q48) Is the risk management process integrated into the development process?
� No � Yes but unclearly � Yes

Consistency and Dependency

(Q49) Are the development activities consistent?
� Not sure � Partially � Yes

(Q50) Do there supporting processes(i.e., documentation, configuration, reviews
and audits) exist to support the primary development and risk management
process?

� No � Partially � Yes

(Q51) Are the artifacts from different activities synchronized and dependent upon
each other?
� No � Partially � Yes

(Q52) Does the project need a high degree of concurrency among the activities?

� Yes � Partially � No

(Q53) Do the development activities consider any traceability link from require-
ments to test through design and code?
� Partially � More than partially � Completely

(Q54) Are the requirements contain sufficient details for design and code?
� No � Yes but unclearly � Yes

154

www.manaraa.com

A Appendix A: Closed Questions

Process Compliance

(Q55) How closely the existing processes are planned to be followed for the
project?
� Not closely � Partially followed � Completely

(Q56) Are the development and risk management processes effective in achieving
the required result?
� No � Partially � Completely

(Q57) Do the development and risk management processes periodically assess to
measure the productivity and overall purpose w.r.t. the organization con-
text?
� Partially � More than partially � Completely

(Q58) Do the organization follow any procedure to internally audit the existing
processes?

� No � Yes but very infrequently � Yes but infrequently
(Q59) Do the audit results used to adjust the existing processes?

� No � Occasionally � Yes
(Q60) Do the practitioners reluctant to follow the process to complete their roles

and responsibilities?
� Yes � Partially � No

Product

Specification

(Q61) Are the business goals and objectives identified for the project?
� Partially � More than partially � Completely

(Q62) Are the business processes, domains, uses cases and future user groups
identified for the project?
� Partially � More than partially � Completely

(Q63) Are the mandatory business rules (e.g. laws, industry standards and related
policies) identified & structured for the project?
� No � Partially � Yes

(Q64) Does the project identify system vision and agreed with customer?
� Partially identified but not agreed � Partially identified & agreed
� Identified & agreed

(Q65) Does the project scope clearly support the business needs and add business
value to the overall customer’s business environment?
� No � Partially but not sure � Yes

Requirements Faults

Please if necessary follow the given requirements error checklist.

(Q66) Do the requirements provide different ambiguous interpretations or lack of
support for rationale?
� Highly � Partially � Rarely

155

www.manaraa.com

(Q67) How many ambiguous terms within the specification document?
� Many � Some � Less than some

(Q68) Are requirements within the project scope?
� No � Partially � Not fully

(Q69) Do the requirements provide incorrect meaning and contain conflicting
terms with other artifacts?
� More than partially � Partially � No

(Q70) Until now, how much percent of the requirements changed over a given
period of the time?
� High ,i.e., ≥ 70% � Medium,i.e., ≥ 30% � Low ,i.e., ≤ 30%

(Q71) Are the early stage requirements frozen before the subsequent development
phases?
� Many expected to be changed � Some � Mostly

(Q72) Is there any mechanism used to perform impact analysis due to the change
of specific single or multiple requirements?
� Rarely � Sometimes � Yes

(Q73) Are the system requirements (e.g. functional, quality, architectural and op-
erational) completely identified?
� Partially � Yes but not all � Completely

(Q74) Are the user requirements (i.e. use cases, scenarios & features) properly
specified?
� No � Partially � Yes

(Q75) Are informal and unwritten user expectations considered in the final speci-
fication?
� No � Partially � Yes

(Q76) Are the requirements traceable to downstream phases, i.e., design, code, test
or deployment?
� No � Some of them � All

(Q77) Are requirements traceable to its source such as business specification,
project scope and user expectation?
� No � Some of them � All

(Q78) Is there any requirement which is not possible to implement within existing
technology?
� Yes many � Some � None

(Q79) Are the factors i.e., goal, scale, minimum and maximum acceptable value
difficult to measure for the quality requirements?
� Yes some of them � Very less � None

(Q80) Is there any requirement which incurs excessive operational needs or caus-
ing additional system cost?
� Yes some � Very less � None

(Q81) Are all requirements categorized and prioritized?
� Yes some � Most of them � All

(Q82) Are the right customer or user representatives involved in the RE process?
� No � Some � Yes

(Q83) Do you follow any standard (template, notations and checklist) for the spec-
ification?
� No � Partially � Yes

(Q84) Are the requirements completely documented and agreed with the user?
� Some of them � Most of them � All

156

www.manaraa.com

A Appendix A: Closed Questions

Time-to-market

(Q85) Is time-to-market the one of the primary product goals?
� Yes � Partially � No

(Q86) Does the project consider to analyze the relevant customer market (market
size, trends, segmentation) at project planning phase?
� No � Partially � Yes

(Q87) Does the project contain features which make the product different from
similar products in the market?
� No � Partially � Yes

(Q88) Does the project consider competitor analysis (i.e., transition cost, product
differentiation and total purchase cost) of the similar product?
� No � Partially � Yes

(Q89) Does the project consider consumer analysis (i.e., groups, user behavior,
demand and link product design with user needs) for the product?
� No � Partially � Yes

(Q90) Does the project consider customer satisfaction factors (usability, perfor-
mance, reliability, maintainability, performance) for the product?
� No � Partially � Yes

(Q91) Are the product requirements stable to support time-to-market of the prod-
uct?
� No � Partially � Yes

Quality and Testing

(Q92) Is quality assurance and management planned and implemented for the
project?
� No � Partially � Completely

(Q93) Is the overall product performance (i.e., throughput, real time response, re-
covery time and access) identified, quantified and agreed with the user?
� Partially � More than partially � Yes

(Q94) Will the software-to-be developed be integrated into the existing system of
the customer premises?
� Yes � Partially � No

(Q95) Does the project include a comprehensive test specification?
� No � Partially � Yes

(Q96) Have possible unit and integration test cases specified?
� No � Partially � Yes

(Q97) Have possible system test cases specified?
� No � Partially � Yes

(Q98) Does the project consider adequate acceptance testing before delivery the
product?
� No � Partially � Yes

(Q99) Are the test results planned to be reviewed during the development?
� No � Partially � Yes

(Q100) Does the project consider easy-to-use and user friendly final product?
� No � Partially � Yes

(Q101) Does the project consider certain usability features such as window, icon
and menu?
� No � Partially � Yes

157

www.manaraa.com

(Q102) Does the project consider security properties (i.e., confidentiality, integrity,
availability, non-repudiation and authentication) from the early develop-
ment?
� Partially � More than partially � Completely

(Q103) Does the project consider security threats and risks of the critical assets?
� Partially � More than partially � Completely

(Q104) Are the security requirements identified and analyzed for the product?
� No � Partially � Yes

(Q105) Does the project consider privacy properties (i.e., consent, notice, purpose,
participation, anonymity and undetectability) to process and manage sensi-
tive information by the software-to-be developed?
� Partially � More than partially � Completely

(Q106) Does the project consider privacy harms (i.e., disclose, unawareness, stor-
age and transfer) and risks which violate privacy of the sensitive informa-
tion?
� Partially � More than partially � Completely

(Q107) Are the privacy requirements identified and analyzed for the product?
� No � Partially � Yes

(Q108) Does the project consider all critical hazards and associated severity levels
relevant for the system-to-be?
� Partially � More than partially � Yes

(Q109) Does the project consider the causes of all critical failure factors such as
hardware errors, human mistakes during operation and maintenance, inter-
face problems and timing problems of the system-to-be?
� Partially � More than partially � Yes

(Q110) Is there any correlation considered from security violation to the software
failure?
� No � Partially � Yes

(Q111) Are the safety requirements identified and analyzed for the product?
� No � Partially � Yes

(Q112) Do the safety requirements consider the result of hazard analysis?
� No � Partially � Yes

(Q113) Does the project consider a complete user manual with the software?
� Incomplete user manual � Un-verified user manual � User manual will
be developed, tested & delivered

(Q114) Does the manual follow any documentation standard (e.g., IEEE 1063-
1987) for preparing the manual?
� No � Partially � Yes

(Q115) Does the manual preparation consider different levels of target audience
(i.e. novice, intermediate, information services staff, engineers, expert and
management)?
� No � Partially � Yes

Operation

(Q116) Do the users maintain any documented process to implement and deploy
the software into their premises?
� No � Partially � Yes

(Q117) Are there any acceptance criteria for the system operation?
� No � Yes but not clearly � Yes

158

www.manaraa.com

A Appendix A: Closed Questions

(Q118) Are all the acceptance tests planned to be performed ?
� No � Some but not all � Yes

(Q119) Do the development team plan to perform comprehensive interviews with
the users related to the system implementation?
� No � Partially � Yes but not comprehensively

(Q120) Do the operational requirements exist in the system specification?
� No � Partially � Yes

(Q121) Does the project consider any user support or problem reporting & resolu-
tion activity during operation?
� No � Partially � Yes

(Q122) Are the users involved during the system deployment identified and are
roles defined?
� No � Will consider later � Yes

(Q123) Is the users’ training planned and scheduled before the new system phys-
ically deployed?
� No � Will planned later � Yes

(Q124) Will the training plan focus to completely trained the future system users?
� No � Only selected user � Yes

(Q125) Will the technical or operational documentation and supporting training
manual planned to be available before the actual training takes place?
� No � Not sure � Yes

(Q126) Is there any training evaluation as feedback from the user planned to be
considered after the training ?
� No � Not sure � Yes

(Q127) Will the required resources in the user environment be available to imple-
ment the system?
� Very limited resource � Not all available � Yes

(Q128) Will the activities related to the product implementation be planned to be
synchronized?
� No � Partially � Yes

(Q129) Does there any installation procedure exist for the deployment?
� No � Partially � Yes

(Q130) Will the existing user’s data be migrated and initialized for the new sys-
tem?
� No � Partially � Yes

(Q131) Do there any checklist plan to assess the proper implementation of the sys-
tem within the user’s operating environment?
� No � Partially � Yes

Maintenance

(Q132) Does the project scope include maintenance?
� Yes � Partially � No

(Q133) Is the scope for maintenance clearly defined?
� No � yes but not clearly � Yes

(Q134) Does the project consider a concrete deliverable phase due to the mainte-
nance?
� No � yes but not clearly � Yes

(Q135) Does any maintenance specification(i.e. change and requirements) exist for
the maintenance?
� No � Partially � Yes

159

www.manaraa.com

(Q136) Is there any emergency release necessary during the maintenance?
� Yes � Partially � No

(Q137) Is there any acceptance criteria necessary once the maintenance activities
carried out?
� No � Partially � Yes

(Q138) Does the project need major product and document release after the main-
tenance?
� Yes � Partially � No

(Q139) Does the customer organization consider maintenance procedure?
� No � unclearly � Yes

(Q140) Are the budget, schedule and roles clearly defined for the maintenance?
� No � Will plan later � Yes

(Q141) Will the overall complexity of the software be increased (i.e., more complex
structure of individual component, or several new components) due to the
maintenance?
� Yes � Not sure � No

(Q142) Can the planned maintenance operation increase the overall volatility of
product?
� Yes � Not sure � No

(Q143) Is the consistency between code and documentation considered during the
maintenance?
� No � Partially � Yes

(Q144) Does the project plan to identify and eliminate the dead and clone code?
� No � Not sure � Yes

(Q145) Is there any negative affect of maintenance to the overall code quality?
� Yes � Not sure � Yes

(Q146) Do the individual modified system components plan to be retested due to
the maintenance?
� No � Still no plan � Yes

(Q147) Does the user acceptance plan to be retested before delivering the main-
tained product?
� No � Still no plan � Yes

(Q148) Will the overall product performance and resource utilization be analyzed
during the maintenance?
� No � Partially � Yes

(Q149) Will the project document and user manual be updated once the mainte-
nance operation is being completed?
� No � Partially � Yes

Human

Motivation & Domain Knowledge

(Q150) Are the practitioners motivated and committed to the project?
� Some of them � Almost all � Yes

(Q151) How is the overall relevant domain knowledge of the development team?
� Not much � Less than adequate � Adequate

160

www.manaraa.com

A Appendix A: Closed Questions

(Q152) Are the practitioners already trained and experienced with tools, language
and development environment?
� Some of them � Most of them � All

(Q153) Are the project members already familiar with the development process?
� Some of them � Most of them � All

(Q154) Are the project members already familiar with the risk management pro-
cess?
� Some of them � Most of them � All

(Q155) Does the development team contain adequate technical knowledge of the
project?
� No � Yes but unsatisfactory � Yes and satisfactory

(Q156) What is the level of technical expertise between the development team and
user?
� Lower by development team � Almost same � Higher by development
team

(Q157) Does the development team contain adequate expertise about the cus-
tomer business environment?
� No � Yes but unsatisfactory � Yes and satisfactory

Customer/user

(Q158) What is the level of involvement of customer / user until now?
� Passive � Occasional � Active

(Q159) How do you evaluate the customer/user relevant project domain knowl-
edge?
� Inadequate � Less than adequate � Adequate

(Q160) Do the users have adequate IT competency?
� Inadequate � Less than adequate � Adequate

(Q161) Are the key users of the different user groups involved in the development
activities?
� No � Some � Yes

(Q162) Are the users actively involved and effectively collaborated to the require-
ments engineering?
� No � Partially � Yes

(Q163) What is the level of confidence of customer/user over the development
team?
� Low � Medium � High

(Q164) Do you think customers/ users have realistic expectations about the project?
� No � Partially � Yes

(Q165) Do you think customers/ users support to implement the control action of
critical risks in their environment?
� No � Partially � Yes

Team Work

(Q166) Are all the development team members identified and available?
� Some � Most of them � Yes

(Q167) Is the development team adequately balanced of technical, project domain
and management expertise?
� No � Partially � Completely

161

www.manaraa.com

(Q168) How did you evaluate the overall development team performance?
� Poor with frequent unhealthy arguments � Average and healthy
arguments � Satisfactory

(Q169) Do the distributed development sites (if any) maintain adequate coordina-
tion?
� No � Partially � Yes

(Q170) Is the development team capable to work with uncertain objective and top
management?
� No � Less than partially � Partially

Communication & Coordination

(Q171) Is there adequate communication between practitioners and users?
� No � Partially � Yes

(Q172) Is there frequent miscommunication between practitioners and users?
� Yes � Sometimes � No

(Q173) Are the conflicts with the customer or users resolved in a timely manner ?
� No � Sometimes � Yes

(Q174) Do the key users often provide feedback to the development team?
� Very rare � Sometimes � Yes

(Q175) Are the users considered as an integral part of the project?
� No � Partially and not all aspect � Yes

(Q176) Does the development team face problem due to large number of users’
involvement?
� No � Partially � Yes

Management

(Q177) How much capable is the project manager to lead the project successfully?
� Unreliable � Partially reliable � Reliable

(Q178) Are all roles related to project management, risk management, develop-
ment, & release management identified and assigned?
� Some � Not all � Yes

(Q179) Is every staff of the distributed site clear about his/her roles and responsi-
bilities?
� Confused � Fairly understood � Clearly understood

(Q180) Does the management has appropriate leadership quality?
� Lack � Average � Adequate

(Q181) What is the level of management commitment (e.g. direction & support)
to overall project activity and critical situation?
� Unreliable � Partially reliable � Reliable

(Q182) How is the confidence of development team on management?
� Low � Medium � More than medium

(Q183) Does the management communicate critical problems with the develop-
ment team?
� No � Sometimes � Yes

(Q184) Does the management support the continual improvement of the develop-
ment processes and development facilities?
� No � Less frequently � Frequently

162

www.manaraa.com

A Appendix A: Closed Questions

(Q185) Does the management always try to achieve customer satisfaction goal?
� No � Not always � Yes always

(Q186) Does the management motivate the practitioner for effective and creative
work?
� Rarely � Sometimes � Frequently

Internal & External Environment

Organizational Stability

(Q187) Does the management agree to trade additional budget and adequate sup-
port for handling project risks?
� No � Not willingly � Yes

(Q188) Are the policies and procedure approved and implemented within the or-
ganizations?
� Some policies exist but not implemented � Policies exist & partially
implemented � Yes Completely

(Q189) Is the organizational structure stable and documented?
� Frequent change � Change in certain interval � Yes

(Q190) Is the organization always change its operational environment?
� Yes � Change in certain interval � Yes but for effective output

(Q191) Does the organization support the project?
� No � Partially � Yes

(Q192) Is the top management capable and not conservative in decision making?
� Not capable & highly conservative � Partially & moderate conservative
� Almost with timely manner & progressive

(Q193) Does the organization has adequate control to the subcontractors & service
providers (if any)?
� No � Partially � almost full control

(Q194) Do there exist organizational life cycle processes (i.e., management, infras-
tructure, improvement and training)?
� No � Not sure � Partially

(Q195) Does the organization support adequate and frequent training facilities?
� No � Infrequently � Yes but not adequately

(Q196) Is the organization highly politically biased ?
� Yes � Medium � No

Development & Communication Facility

(Q197) Are there adequate work stations, storage and processing capacity for the
software project?
� Partially � More than partially � Yes

(Q198) Are all the development and project management tools available ?
� Some of them � Almost all of them � Yes

(Q199) Do there adequate infrastructure facilities (e.g. power, work space, Inter-
net, telephone) exist to work and communicate with customer /user & other
distributed development site?
� No � Partially � Almost

163

www.manaraa.com

(Q200) Is all the necessary hardware available when needed?
� No � Not always � Yes

Thank your once again for your cooperation.

164

www.manaraa.com

APPENDIX B

Appendix B: Open Questions

The purpose of this interview is to obtain feedback on Goal-driven Software Development
Risk Management Model(GSRM). Your comments will be very much vital for this re-
search. Therefore we would like to request you to answer the open questions from your un-
derstanding (i.e. positive or negative) about the implementation of GSRM into the project.
The collected information will be used only for the research purpose. Thanks for your coop-
eration

Risk Management Practice

(Q1) What are the techniques commonly used for risk management in the projects
you already involved?

(Q2) Is the risk management process integrated into software development pro-
cess or is it a separated process?

(Q3) What are the main reasons of not having a formal risk management practice
in the software project (based on your experience from the project that you
have participated)?

(Q4) What are the main reasons of software project failure to meet its project spe-
cific goals (based on your experience from the project that you have partici-
pated) ?

(Q5) What are the main reasons for the requirements problems (based on your
experience from the project that you have participated)?

(Q6) What skill and competence exist by the project personnels in the current
project to perform risk management activities?

(Q7) How much effort would you prefer for an effective risk management prac-
tice?

(Q8) If the project is by inherent nature high risky, then which part of risk man-
agement is the most important from your opinion and which artifacts of the
development you focus more?

165

www.manaraa.com

(Q9) What type of risk culture is followed by your company for software devel-
opment, deployment, operation and maintenance?

Overall Evaluation of GSRM

(Q10) Is goal-driven approach for risk management useful in software develop-
ment project?

(Q11) What are the problems you observed because of using goal-driven approach
for software risk management?

(Q12) Is it feasible to integrate risk management activities in requirements engi-
neering (Please specify the overhead of the integration) ?

(Q13) Do you think the process used for GSRM is appropriate and adequate for
managing risk in software project?

(Q14) Do you think the artifacts of GSRM are appropriate and realistic for control-
ling the risks in software projects?

(Q15) Do the artifacts clearly represent the goal and risk information and effec-
tively communicate the risk information with the management?

(Q16) Which techniques of individual activities of GSRM are useful or not-useful
from your opinion and why?

(Q17) Do you think the closed questions are practical to identify factors which
pose for the potential risk event from the perspective of a holistic view?

(Q18) Which part of the GSRM is the most difficult based on your experience in
the running project?

(Q19) How much effort is consumed by GSRM to perform a complete risk man-
agement practice in the running project?

(Q20) How much reliable are the identified control actions by GSRM to prevent or
reduce the identified risk w.r.t the project context?

(Q21) What are the overall impacts of risk management in the software project?
(Q22) What are the complexities caused by GSRM?
(Q23) Can practitioners easily learn the basic of GSRM and its activities and arti-

facts without having a detail knowledge of goal model?
(Q24) Do you think GSRM can be applicable in any software project domain?
(Q24) How does GSRM differ from your existing risk management practice?
(Q26) Do you think GSRM support to achieve the main goals of the software

project?
(Q27) How can the result of GSRM from the running project be effectively used

for the upcoming projects?
(Q28) Do you have any recommendation to improve GSRM?
(Q29) Is the integration of risk management into early software project important?
(Q30) What are the criteria necessary to consider the integration of risk manage-

ment into software development or management process?

166

www.manaraa.com

APPENDIX C

Appendix C: Checklist for Requirements Errors

This appendix provides a checklist of identifying errors of the elicited require-
ments. However depending on the project context, product scope, available re-
sources and knowledge, nature of the errors can vary a lot. The checklist consists of
root cause examples, test criteria, assessment strategy and mitigation points. The
purpose of the checklist is only to provide a guideline to handle the error com-
monly exist in requirements. This checklist is a part of the goal-driven software
development risk management model implementation into the project.

Ambiguity Requirements Table C.1 shows the ambiguity requirements checklist.

Table C.1: Ambiguity requirements checklist

Root causes examples
o Overlap, imprecise and insufficient details in requirements which influence to fill
the blanks by assumption.
o Different interpretation is given for the same requirement.
o Subjective meaning of requirement rather than objective.
o Some examples of ambiguity phases are: vague subjects refer to multiple things
such as pronouns(i.e.,it, they), vague adjectives (i.e., always, soft, hard,strong, weak,
sufficient, useful,user friendly), vague prepositions(i.e., above, below, under).
Test criteria
q Does the requirement provide different interpretation by different reviewers?
q How many places ambiguous phrases are included within the requirement
specification?
Assessment approach
q (highly, partially, rarely)/ (many, some, very few)
Mitigation points
r Ambiguity phrases should be revised from the requirement specification.
r Clear and simple language construction should be followed for requirement document.
r A common glossary to clearly defined business, technical & domain specific terms
(e.g., security, privacy, safety).

167

www.manaraa.com

Incomplete Requirements Table C.2 shows the incomplete requirements check-
list.

Table C.2: Incomplete requirements checklist

Root cause examples
o Missing constraints such as linkup with other facilities & requirements.
o Missing external interfaces and critical quality attributes(i.e., performance & security)
user classes and instances (i.e., use case, derive value) and instance element(i.e., feature).
o Lack of effort to fix the incomplete part due to budget and schedule constraint.
o Inadequate user involvement and lack of skill within RE activities.
o Stakeholders sometime assume some parts of the requirement is obvious without saying or
implicit expectation that influences for under-specified requirements.
Test criteria
q Are the use cases complete (i.e., valid/invalid inputs, outputs, trigger
& post conditions, alternative courses, exceptions and boundary values)?
q How many places of the specification are marked with to be determined (TBD) or
to be added (TBA)?
q Does the specification contain (sections & sub-sections, page number, figures & tables)?
q Are all user groups and classes identified?
Assessment approach
q (no, partially, yes)/ (many, some, no)
Mitigation points
r Use cases should be completed and specify response for valid & invalid inputs and outputs,
address trigger & post conditions, normal & alternative courses, exceptions, boundary
values by adopting standard use case templates.
r Requirements elicitation requires collaboration among domain experts(i.e., maintenance,
performance, safety, security) and representatives from all the user groups.
r Functional, quality, data and interface requirements are required to contain
necessary information about what it should do and should not do.
r Section marked with TBD or TBA need to be revised.
r All system requirements required to be identified and documented.

168

www.manaraa.com

C Appendix C: Checklist for Requirements Errors

Incorrect Requirements Table C.3 shows the incorrect requirements checklist.

Table C.3: Incorrect requirements checklist

Root causes examples
o Requirement fails to specify actual needs of stakeholders and business context.
o Incorrect assumption, inappropriate bias, insufficient knowledge by user &
requirement engineer.
o Wrong users’ involvement in RE who do not know the actual needs.
Test criteria
q Do the requirements align with goals and business specification?
qHow many mistakes or wrong parts exist in specification?
Assessment approach
q (yes, partially, no)/ (many, some, very few)
Mitigation points
r Scenarios and test cases can be used to verify the requirements.
r Active user involvement and effective feedback are essential.

Unverifiable Requirements Table C.4 shows unverifiable requirements checklist

Table C.4: Unverifiable requirements checklist

Root cause examples
o Failure to verify whether the system meets the requirement.
o Contradictory characteristics within requirements dependency metrics.
o Inadequate facilities to meet the key users.
Test criteria
q Do there exist possible cost effective attributes to verify the requirements?
q Is it possible to generate test cases from individual or group requirements?
Assessment strategy
q (no, often, yes)/(no, yes but difficult, yes)
Mitigation points
r Non measurable quantities & ambiguous terms should be revised from the requirement.
r High level requirements require adequate refinement to generate test cases.

169

www.manaraa.com

Unstable Requirements Table C.5 shows the unstable requirements checklist.

Table C.5: Unstable requirement checklist

Root cause examples
o Unclear definition of product scope, long development life cycle, errors & inconsistencies
within requirements specification and high initial specification.
o Nature of requirement (i.e., emergent, assumption, compatibility).
o Change of external interfaces (e.g., business needs change, new competitors, new technologies
, new or changed laws and legislations and customer priorities).
o Failure to manage the change(e.g., change rate too high, scope of change too big, too
expensive to implement the change).
o New requirements are added at the late phase or numerous user requests.
o Project scope grows in an uncontrolled way such as adding new features or process
and including more functions.
Test criteria
q How much percentage of the requirement changes over a given period of time?
q How many place includes variable domain?
Test criteria
q (high, medium, low)/(many, some, none)
Mitigation points
r Variable domain parts need to be revised.
r Well defined policy to support change management.
r Project management should accommodate space for any growth of requirements change.
r New requirements need to be verified w.r.t. system vision and project scope.
r System vision, features, system boundary, success criteria need to be clearly defined
within standard template and agreed with the customer.

Data Requirements Table C.6 shows the data requirements checklist.

Table C.6: Data requirements checklist

Root cause examples
o Unknown and non standard data require to implement the requirement.
o Unavailable data type or object, out of range data within the existing data type.
Test criteria
q Are the basic data requirements factors such as data type, possible range, data volume,
legitimate operations identified and verified for the requirements?
Assessment strategy
q (no, partially, yes)
Mitigation points
r Data requirement must be completed with its type, semantics, volume, update frequency,
legitimate operations on data and relationship with other data and relevant information.

170

www.manaraa.com

C Appendix C: Checklist for Requirements Errors

Untraceable Requirements Table C.7 shows untraceable requirements checklist.

Table C.7: Untraceable requirements checklist

Root cause examples
o Unable to trace the requirements to downstream artifacts such as architecture,
design elements and test sets.
o Unable to trace the requirement back to its origin such as business specification,
regulations and product vision.
o A large number of requirements make tracing difficult.
o Fail to uniquely and correctly identify requirements.
Test criteria
qIs any tracing element or link identified from requirement to source documents?
q Is any tracing element or link identified from requirement to design, code, testing?
Assessment approach
q (yes, partially, no)
Mitigation points
r Requirements require to be uniquely identified.
r Well defined policy and tool support (if possible) for the tracing.
r Tracing matrix should clearly specify elements and links to trace from requirements
to both downstream and upstream development phases.

Infeasible Requirements Table C.8 shows infeasible requirements checklist.

Table C.8: Infeasible requirements checklist

Root cause examples
o Difficult to implement requirement and its related features within available
technology (hardware or software) and estimated schedule and cost.
o Requirements may be individually feasible but combined with other requirements might
be difficult to implement.
Test criteria
q Is it feasible to implement the requirement with existing technologies, language,
tools and hardware ?
q Are experience personnels available to verify the requirements?
Assessment strategy
q (no, partially, yes)/ (readily, usually but shared and unavailable)
Mitigation points
r Feasibility analysis needs to be performed for the critical requirements .
r Test cases might be generated to identify feasibility of the requirements.

171

www.manaraa.com

Inconsistent Requirements Table C.9 shows inconsistency requirements checklist.

Table C.9: Inconsistent requirements checklist

Root cause examples
o Conflicts among requirements and contradictory characteristics by requirements
dependency metrics.
o Requirements emphasized more on design by stating how to solve the problem.
o When a single requirement addresses multiple product or unnecessary features
Test criteria
q Does the requirements support possible product features?
q Are there any logical conflicts or inconsistency among terms used in the requirements?
q Does there exist any conflict between specification with real world objects ?
Assessment strategy
q (no, partially, yes)/ (yes, yes to some extent, no)
Mitigation points
r Conflicting terms, characters and logics should be modified in the requirements .
r Single requirement should not support more than one product feature .
r Requirement must initially emphasize on what the system should and should not
do, rather than providing any design and implementation solution.

Requirement Quantification Table C.10 shows requirements quantification check
list.

172

www.manaraa.com

C Appendix C: Checklist for Requirements Errors

Table C.10: Requirement quantification checklist

Root cause examples
o Fail to quantify quality attribute such as performance, reliability, usability, & security.
o Qualitative terms (i.e., easy, fast, reliable, secure, scalable, efficient and robust)
sometimes influence misunderstandings between product and stakeholders.
o Project team members reluctant to precisely specify minimum or maximum acceptable
amount.
Test criteria
q Is the quality profile (e.g., scale, method, minimum and acceptable level, goal
and range) identified and analyzed ?
Assessment strategy
q (no, partially, yes)
Mitigation points
r Factors to quantify requirement such as scale(i.e., measuring unit of quantify statement),
meter(i.e., method, frequency, source), must (i.e.,minimum level), wish (i.e.,desirable
level to achieve), trend (i.e., historical range), record (i.e., best known
achievement) should be identified and evaluated for requirements.
r Quality factors identification should derive from user expectation, regulations, business
specification and quality goal.

Non-Compliance Requirements Table C.11 shows non-compliance requirements
checklist.

Table C.11: Non-compliance requirement checklist

Root causes
o Requirement conflicts with key regulatory elements(such as legal rights, correlatives
and constraints) and with the existing company policies and procedures.
o Requirement influences for non-compliance issues .
Test criteria
q Does the requirement conflict with laws and regulation?
Assessment strategy
q (yes, partially, no)
Mitigation points
r Key elements from relevant regulation,industry standard are required to identify based on
product scope.
r Elicited requirements should be refined to align with derived key concepts(legal rights,
correlatives, obligations and policies) from the regulations.

173

www.manaraa.com

174

www.manaraa.com

Bibliography

[ADH+96] C. J. Alberts, A. J. Dorofee, R. Higuera, R. L. Murphy, J. A. Walker,
and R. C. Williams. Continuous Risk Management Guidebook. Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.,
1996.

[AER02] A. I. Antón, J. B. Earp, and A. Reese. Analyzing website privacy re-
quirements using a privacy goal taxonomy. In RE ’02: Proceedings
of the 10th Anniversary IEEE Joint International Conference on Require-
ments Engineering, pages 23–31, Washington, DC, USA, 2002. IEEE
Computer Society.

[AG06] Y. Asnar and P. Giorgini. Modelling risk and identifying countermea-
sures in organizations. In In: Proceedings of 1st International Workshop
on Critical Information Infrastructures Security (CRITIS 06). Volume 4347
of LNCS, pages 55–66. Springer, 2006.

[AG07] Y. Asnar and P. Giorgini. Risk analysis as part of the requirements
engineering process. Technical report, Technical Report DIT-07-014,
Department of Information and communication Technology, Univer-
sity of Trento, 2007.

[AL04] A.K.T.Hui and D.B. Liu. A bayesian belief network model and tool
to evaluate risk and impact in software development projects. In
Annual Symposium on Reliability and Maintainability(RAMS), 2004.

[AMN07] N. H. Arshad, A. Mohamed, and Z. M. Nor. Risk factors in
software development projects. In SEPADS’07: Proceedings of the
6th WSEAS International Conference on Software Engineering, Paral-
lel and Distributed Systems, pages 51–56, Stevens Point, Wisconsin,
USA, 2007. World Scientific and Engineering Academy and Society
(WSEAS).

[AMV06] W. Asprayn, F. Mayadas, and M. Y. Vardi. Globalization and off-
shoring of software: A report of the acm job migration task force.
Technical report, ACM, NY, 2006.

[Arr57] K. J. Arrow. Decision theory and operations research. Operations
Research, 5, No. 6:765–774, December 1957.

[AS499] Standard australia, as/nzs 4360:1999 risk management, 1999.
[BAB09] A guide to the business analysis body of knowledge (babok guide).

International Institute of Business Analysis (IIBA), March 2009.

175

www.manaraa.com

Bibliography

[Ban08] P. L. Bannerman. Risk and risk management in software projects: A
reassessment. The Journal of Systems and Software, 81(12):2118–2133,
2008.

[Bas] Bangladesh association of software & information services (basis).
http://www.basis.org.bd (last accessed October 2010).

[BB01] B. Boehm and V. Basili. Software defect reduction top 10 list. Com-
puter, 34(1):135–137, 2001.

[BC01] T. Bedford and R. Cooke. Probabilistic Risk Analysis. Foundations and
Methods. Cambridge University Press, 2001.

[BEK+98] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy.
Using the winwin spiral model: A case study. Computer, 31(7):33–44,
1998.

[BFH08] K. Boness, A. Finkelstein, and R. Harrison. A lightweight technique
for assessing risks in requirements analysis. IET Software, 2(1):46–57,
2008.

[BFI+09] M. Broy, A. Fleischmann, S. Islam, L. Kof, C. Leuxner, K. Lochmann,
D. Mendez-Fernandez, B. Penzenstadler, W. Sitou, and S. Winter. To-
wards an integrated approach to requirement engineering. Technical
report, Technical Report, TUM-I0935,Technische Universitt Mnchen,
December 2009.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR,
1981.

[Boe91] Barry W. Boehm. Software risk management: Principles and prac-
tices. IEEE Software, 8(1):32–41, 1991.

[Bor05] Borland. Mitigating risk with effective requirements engineering.
Technical report, White paper, Borland, 2005.

[BP01] B. Boehm and D. Port. Educating software engineering students to
manage risk. In ICSE ’01: Proceedings of the 23rd International Confer-
ence on Software Engineering, pages 591–600, Washington, DC, USA,
2001. IEEE Computer Society.

[BPG+04] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Tropos: An agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems, 8:203–236, 2004.

[Bro95] F.P. Brooks. The Mythical Man-Month: Essays on Software Engineering,.
Addison-Wesley Professional, 1995.

[Bro06] M. Broy. Requirements engineering as a key to holistic software qual-
ity. In Computer and Information Sciences ISCIS 2006, Lecture Notes in
Computer Science, 2006.

[BRT93] H. Barki, , S. Rivard, and J. Talbot. Toward an assessment of soft-
ware development risk. Journal of Management Information Systems,
10(2):203–225, 1993.

[BWHW05] C. Braun, F. Wortmann, M. Hafner, and R. Winter. Method construc-
tion - a core approach to organizational engineering. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied computing, pages
1295–1299, New York, NY, USA, 2005. ACM.

[Car99] E. Carmel. Global software teams: collaborating across borders and time
zones. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[CAW97] R. N. Charette, K. M. Adams, and M. B. White. Managing risk in
software maintenance. IEEE Software, 14(3):43–50, 1997.

176

www.manaraa.com

Bibliography

[CD97] T. Connolly and D. Dean. Decomposed versus holistic estimates
of effort required for software writing tasks. Management Science,
43(7):1029–1045, 1997.

[CDN88] J. P. Chin, V. A. Diehl, and K. L. Norman. Development of an instru-
ment measuring user satisfaction of the human-computer interface.
In CHI ’88: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 213–218, New York, NY, USA, 1988. ACM.

[CH93] C. Chittister and Y. Haimes. Risk associated with software develop-
ment: A holistic framework for assessment and management. IEEE
Transactions on Systems, Man and Cybernetics, 23, 1993.

[Cha99] R. N. Charette. The competitive edge of risk entrepreneurs. IT Pro-
fessional, 1(4):69–73, 1999.

[Cha05] R.N. Charette. Why software fails? IEEE Spectrum, 2005.

[CKM+93] M. Carr, S. Konda, I. Monarch, C. Ulrich, and C. Walker. Taxon-
omy based risk identification (cmu/sei-93-tr-6, ada266992). Technical
report, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA., 1993.

[COS04] COSO. Enterprise risk management - integrated framework. Techni-
cal report, Committee of Sponsoring Organizations of the Treadway
Commission, 2004.

[Dav93] Alan M. Davis. Software Requirements: Objects, Functions and States.
Prentice Hall PTR, New Jersey, 2nd edition, 1993.

[Dgb] Digital Bangladesh Vision 2021. http://www.boi.gov.bd (last access
October 2010).

[DM92] W. H. Delone and E. R. McLean. Information systems success:
The quest for the dependent variable. Information Systems Research,
3(1):60–95, 1992.

[Dom] Domain software technologies ltd. http://www.domtech.co.uk/ (
last access October 2010).

[DvLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed re-
quirements acquisition. Science of Computer Programming, 20(1-2):3–
50, 1993.

[DWP07] F. Deissenboeck, S. Wagner, and M. Pizka. An activity-based qual-
ity model for maintainability. In International Conference on Software
Maintenance(ICSM07), 2007.

[EH78] H. J. Einhorn and R. M. Hogarth. Confidence in judgment: Persis-
tence of the illusion of validity. Psychological Review, 85 , no 5:395–416,
1978.

[EH04] J. E.Tomayko and O. Hazzan. Human Aspects of Software Engineering
(Electrical and Computer Engineering Series). Charles River Media, Inc.,
Rockland, MA, USA, 2004.

[EM97] K. Ewusi-Mensah. Critical issues in abandoned information systems
development projects. Communications of the ACM, 40(9):74–80, 1997.

[ESSD07] S. Easterbrook, J. Singer, M.A. Storey, and D. Damian. Selecting Em-
pirical Methods for Software Engineering Research. Springer, 2007.

[FCD02] A. Fuller, P. Croll, and L. Di. A new approach to teaching software
risk management with case studies. In CSEET ’02: Proceedings of the
15th Conference on Software Engineering Education and Training, page
215, Washington, DC, USA, 2002. IEEE Computer Society.

177

www.manaraa.com

Bibliography

[FcY04] C.-Feng Fan and Y. chang Yu. BBN-based software project risk man-
agement. The Journal of System and Software, 73(2):193–203, 2004.

[FHK+01] B. Freimut, S. Hartkopf, P. Kaiser, J. Kontio, and W. Kobitzsch. An in-
dustrial case study of implementing software risk management. SIG-
SOFT Software Engineering Notes, 26(5):277–287, 2001.

[Fir] D. Firesmith. Open process framework, opf metamodel.
http://www.opfro.org/.

[Fir04] D. Firesmith. Creating a project-specific requirements engineering
process. Journal of Object Technology, 3(5), 2004.

[Fir06] D. Firesmith. Requirements engineering tasks. Journal of Object Tech-
nology, 5(8), 2006.

[Fis67] M. Fisz. Probability Theory and Mathematical Statistics. John Wiley &
Sons, New York, 1967.

[FK09] Daniel Mndez Fernndez and Marco Kuhrmann. Artefact-based Re-
quirements Engineering and its Integration into a Process Frame-
work. Forschungsbericht TUM-I0929, Technische Universität
München, nov 2009.

[FLN+98] N. Fenton, B. Littlewood, M. Neil, L. Strigini, A. Sutcliffe, and
D. Wright. Assessing dependability of safety critical systems using
diverse evidence. In IEE Proceedings Software Engineering, volume
145, pages 35–39, 1998.

[FM00] S.-Wei Foo and A. Muruganantham. Software risk assessment model.
In Proceedings of the IEEE International Conference on Management of
Innovation and Technology (ICMIT 2000), 2000.

[FN08] N. Fenton and M. Neil. Visualising your risks, agenarisk.
http://www.agena.co.uk/resources, 2008.

[FN09] N. Fenton and M. Neil. Measuring your risks.
http://www.agena.co.uk/resources, 2009.

[FR07] R. France and B. Rumpe. Model-driven development of complex
software: A research roadmap. In Future of Software Engineer-
ing(FOSE07), pages 37–54, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[GBB+06] E. Geisberger, M. Broy, B. Berenbach, J. Kazmeier, D. Paulish, and
A. Rudorfer. Requirements engineering reference model (rem). Tech-
nical report, Technische Universität Müunchen, 2006.

[Gei95] J. D. Geier. The delphi survey methodology: An approach to deter-
mine training needs. In Proceedings of the 8th SEI CSEE Conference
on Software Engineering Education, pages 389–402, London, UK, 1995.
Springer-Verlag.

[GHKM00] L. Goossens, F. Harper, B. Kraan, and H. Meacutetivier. Expert judge-
ment for a probabilistic accident consequence uncertainty analysis.
Radiation Protection and Dosimetry, 90, no 3:295–303, 2000.

[Gil92] A. C. Gillies. Software Quality: Theory and Management. Chapman &
Hall, Ltd., London, UK, UK, 1992.

[Gla98] Robert L. Glass. Software Runaways: Monumental Software Disasters.
Prentice-Hall, 1998.

[Gla99] R. L. Glass. Evolving a new theory of project success. Communications
of ACM, 42(11):17–19, 1999.

[Gli07] M. Glinz. On non-functional requirements. In 15th IEEE International
Requirements Engineering Conference(RE07), pages 21–26, 2007.

178

www.manaraa.com

Bibliography

[GMS99] A. Gray, S. G. MacDonell, and M. J. Shepperd. Factors systematically
associated with errors in subjective estimates of software develop-
ment effort: The stability of expert judgment. In METRICS ’99: Pro-
ceedings of the 6th International Symposium on Software Metrics, page
216, Washington, DC, USA, 1999. IEEE Computer Society.

[Gro95] Standish Group. Unfinished voyages.
http://www.standishgroup.com/visitor/voyages.htm, 1995.

[HC99] B. Hughes and M. Cotterell. Software project management. The
McGraw-Hill Companies, 2nd edition, 1999.

[Her99] D. S. Herrmann. Software safety and reliability: techniques, approaches,
and standards of key industrial sectors. IEEE Computer Society, Wash-
ington, DC, USA, 1999.

[HGBJ05] S.H. Houmb, G. Georg, J. Bieman, and J. Jurjens. Cost-benefit trade-
off analysis using bbn for aspect-oriented risk-driven development.
In ICECCS ’05: Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems, pages 195–204, Washington,
DC, USA, 2005. IEEE Computer Society.

[HIK+10] S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schneider. Elicit-
ing security requirements and tracing them to design: an integration
of common criteria, heuristics, and umlsec. Requirement Engineering
Journal, special issue on security requirements, 15(1):63–93, 2010.

[Hog87] R.M. Hogarth. Judgement and Choice. John Wiley and Sons, New York,
USA, 1987.

[Hou07] S. H. Houmb. Decision Support for Choice of Security Solution- The
Aspect-Oriented Risk Driven Development (AORDD) Framework. PhD
thesis, Department of Computer and Information Science, Norwe-
gian University of Science and Technology, 2007.

[HWFP07] C. Hood, S. Wiedemann, S. Fichtinger, and U. Pautz. Requirements
Management: Interface Between Requirements Development and all other
Engineering Processes. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2007.

[Iba] Ibacsbd limited. http://www.ibacsbd.com, Last access 2009.
[ID08] S. Islam and W. Dong. Human factors in software security risk man-

agement. In LMSA ’08: Proceedings of the first international workshop on
Leadership and management in software architecture, pages 13–16, New
York, NY, USA, 2008. ACM.

[IEEa] IEEE Std 1219-1998: IEEE standard for software maintenance.
[IEEb] IEEE std 12207.0-1996, industry Implementation of International

Standard ISO/IEC 12207:1995 standard for information technology
-software life cycle processes.

[IEE98] The institute of electrical and inc. electronics engineers, ieee rec-
ommended practice for software requirements specifications,ieee std
830-1998, 1998.

[IEE06] IEEE16085: 2006 Systems and Software Engineering Life Cycle Pro-
cesses Risk Management. The Institute of Electrical and Electronics
Engineers, Inc., 2006.

[IH10] S. Islam and S. H. Houmb. Integrating risk management activ-
ities into requirements engineering. In Proc. of the 4th IEEE Re-
search International Conference on Research Challenges in Information Sci-
ence(RCIS2010), Nice, France, 2010.

179

www.manaraa.com

Bibliography

[IH11] S. Islam and S. H. Houmb. Towards a framework for offshore out-
source software development risk management model. Journal of
Software (JSW), Special Issue: Selected Papers of the IEEE International
Conference on Computer and Information Technology (ICCIT 2009), 2011.

[IHMFJ09] S. Islam, S. H. Houmb, D. Mendez-Fernandez, and Md. M. A.
Joarder. Offshore-outsourced software development risk manage-
ment model. In In Proc. of the 12th IEEE International Conference on
Computer and Information Technology (ICCIT 2009), Dhaka , Bangladesh,
DOI: 10.1109/ICCIT.2009.5407292, pages 514–519, 2009.

[IJH09] S. Islam, M. A. Joarder, and S. H. Houmb. Goal and risk factors in off-
shore outsourced software development from vendor’s viewpoint.
In ICGSE ’09: Proceedings of the 2009 Fourth IEEE International Confer-
ence on Global Software Engineering, pages 347–352, Washington, DC,
USA, 2009. IEEE Computer Society.

[IMJ10] S. Islam, H. Mouratidis, and J. Jürjen. A framework to support align-
ment of secure software engineering with legal regulations. Jour-
nal of Software and Systems Modeling (SoSyM) Theme Section on Non-
Functional System Properties in Domain-Specific Modeling Languages
(NFPinDSML), 2010.

[IN08] C. L. Iacovou and R. Nakatsu. A risk profile of offshore-outsourced
development projects. Communication of the ACM, 51(6):89–94, 2008.

[Isl09] S. Islam. Software development risk management model: a goal
driven approach. In ESEC/FSE Doctoral Symposium ’09: Proceedings
of the doctoral symposium for ESEC/FSE on Doctoral symposium, pages
5–8, New York, NY, USA, 2009. ACM.

[ISOa] Information technology – process assessment – part 2: Performing an
assessment, ISO/IEC 15504-2. http://www.iso.org/iso/.

[ISOb] International Standard: Quality Management Systems Require-
ments, iso 9001:2000. http://www.iso.org/iso.

[ISOc] ISO/IEC 27001:2005 Specification for Information Security Manage-
ment. International Organization for Standardization (ISO) /Inter-
national Electrotechnical Commission (IEC).

[Iso02] Risk management-vocabulary-guidelines for use in stan-
dards,iso/iec guide 73, 2002.

[Jen96] Finn. V. Jensen. Introduction to Bayesian Networks. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996.

[JJ02] J. Järvinen and J. Jartti. Is your project ready for time-to-market fo-
cus? In PROFES ’02: Proceedings of the 4th International Conference on
Product Focused Software Process Improvement, pages 198–206, London,
UK, 2002. Springer-Verlag.

[JK00] J. Jiang and G. Klein. Software development risks to project effective-
ness. The Journal of Systems and Software, 52(1):3–10, 2000.

[JKD02] J. Jiang, G. Klein, and R. Discenza. Perception differences of software
success: provider and user views of system metrics. The Journal of
Systems and Software, 63(1):17–27, 2002.

[JKL98] G. Gerhard J. Kontio and D. Landes. Experiences in improving risk
management processes using the concepts of the riskit method. SIG-
SOFT Software Engineering Notes, 23(6):163–174, 1998.

[Kar95] D. W. Karolak. Software Engineering Risk Management. IEEE Computer
Society Press, 1995.

180

www.manaraa.com

Bibliography

[KCLS98] M. Keil, P. E. Cule, K. Lyytinen, and R. C. Schmidt. A framework
for identifying software project risks. Communications of the ACM, 41,
issues 11(11):76–83, 1998.

[KNA09] S.U. Khan, M. Niazi, and R. Ahmad. Critical success factors for off-
shore software development outsourcing vendors: A systematic lit-
erature review. In ICGSE ’09: Proceedings of the 2009 Fourth IEEE In-
ternational Conference on Global Software Engineering, pages 207–216,
Washington, DC, USA, 2009. IEEE Computer Society.

[Kon01] J. Kontio. Software Engineering Risk Management: A Method, Improve-
ment Framework and Empirical Evaluation. PhD thesis, Helsinki Uni-
versity of Technology, 2001.

[KPP+02] B. A. Kitchenham, S. L. Pfleeger, M. L. Pickard, P. W. Jones, D. C.
Hoaglin, K. EI Emam, and J. Rosenberg. Preliminary guidelines for
empirical research in software engineering. IEEE Transactions on Soft-
ware Engineering, 28(8):721–734, 2002.

[KS04] Y. H. Kwak and J. Stoddard. Project risk management: lessons
learned from software development environment. Technovation,
24(11):915 – 920, 2004.

[Lin99] K. R. Linberg. Software developer perceptions about software project
failure: a case study. The Journal of Systems and Software, 49(2-3):177–
192, 1999.

[Lit] Hugin Lite. Hugin expert the leading decision support tool.
http://www.hugin.com/.

[LK95] P. Loucopoulos and V. Karakostas. System Requirements Engineering.
McGraw-Hill, Inc., New York, NY, USA, 1995.

[LW00] D. Leffingwell and D. Widrig. Managing software requirements: a uni-
fied approach. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[LWE01] B. Lawrence, K. Wiegers, and C. Ebert. The top risks of requirements
engineering. IEEE Software, 18(6):62–63, 2001.

[LYM03] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements
analysis within a social setting. In RE ’03: Proceedings of the 11th IEEE
International Conference on Requirements Engineering, page 151, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[McC96] S. McConnell. Rapid Development , Taming wild software schedules. Mi-
crosoft Press, 1996.

[McC98] S. McConnell. Software project survival guide. Microsoft Press, Red-
mond, WA, USA, 1998.

[MCCW93] M.Paulk, B. Curtis, M. Chrissis, and C. Webster. Capability maturity
model for software, cmu/sei-93-tr-024. Technical report, Software
Engineering Institute, Carnegie Mellon, 1993.

[McM04] John McManus. Risk Management In Software Development Projects.
Elsevier Science Inc., 2004.

[MG06] H. Mouratidis and P. Giorgini. Integrating Security and Software Engi-
neering: Advances and Future Vision. IGI Global, 2006.

[MG07] H. Mouratidis and P. Girogini. Secure tropos: A security-oriented
extension of the tropos methodology. International Journal of Soft-
ware Engineering and Knowledge Engineering,World Scientific Publishing
Company, 17(2):285309, 2007.

181

www.manaraa.com

Bibliography

[Moy97] T. Moynihan. How experienced project managers assess risk. IEEE
Software, 14(3):35–41, 1997.

[MRW77] J. McCall, P. K. Richards, and G. F. Walters. Concepts and Definitions of
Software Quality, Factors in Software Quality. Volume I. NTIS, 1977.

[MS87] J. G. March and Z. Shapira. Managerial perspectives on risk and risk
taking. Management Science, 33, No. 11:1404–1418, November 1987.

[Neu95] P. Neumann. Safeware: System safety and computers. SIGSOFT
Software Engineering Notes, 20(5):90–91, 1995.

[NI09] R. T. Nakatsu and C.L. Iacovou. A comparative study of important
risk factors involved in offshore and domestic outsourcing of soft-
ware development projects: A two-panel delphi study. Information
and Management, 46(1):57–68, 2009.

[NKM08] Jaana Nyfjord and Mira Kajko-Mattsson. Integrating risk manage-
ment with software development: State of practice. In Proceedings of
the International MultiConference of Engineers and Computer Scientists
2008 (IMECS), 2008.

[Nuk99] J. & Forsell M. Nukari. Suomen ohjelmistoteollisuuden kasvun
strategiat ja haasteet. Teknologian kehittmiskeskus, 1999. Teknolo-
giakatsaus 67/99.

[OBD+06] A. OHagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite,
D. J. Jenkinson, J. E. Oakley, and T. Rakow. Uncertain Judgements:
Eliciting Experts Probabilities. Wiley, 2006. Wiley, 2006.

[OG09] E. E. Odzaly and P. Des Greer. Software risk management barriers:
An empirical study. In ESEM ’09: Proceedings of the 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement,
pages 418–421, Washington, DC, USA, 2009. IEEE Computer Society.

[Pea01] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge Uni-
versity Press, 2001.

[Pfl00] S. L. Pfleeger. Risky business: what have we yet to learn about risk
management. The Journal of Systems and Software, 53(3):265–273, 2000.

[PK01] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research:
part 1: turning lemons into lemonade. SIGSOFT Software Engineering
Notes, 26(6):16–18, 2001.

[PNJE06] R. Prikladnicki, A. Nicolas, L. Jorge, and R. Evaristo. A reference
model for global software development: Findings from a case study.
In ICGSE ’06: Proceedings of the IEEE international conference on Global
Software Engineering, pages 18–28, Washington, DC, USA, 2006. IEEE
Computer Society.

[Pre96] R. Pressman. Software Engineering: A practitioners Approaches.
McGraw-Hill, 1996.

[Pri09] R. Prikladnicki. Exploring propinquity in global software engineer-
ing. In ICGSE ’09: Proceedings of the 2009 Fourth IEEE International
Conference on Global Software Engineering, pages 133–142, Washington,
DC, USA, 2009. IEEE Computer Society.

[PV09] J. D. Procaccino and J. M. Verner. Software developers’ views of end-
users and project success. Communication of the ACM, 52, No 5(5):113–
116, 2009.

[PVOD02] J. Drew Procaccino, June M. Verner, Scott P. Overmyer, and Marvin E.
Darter. Case study: factors for early prediction of software develop-
ment success. Information and Software Technology, 44(1):53 – 62, 2002.

182

www.manaraa.com

Bibliography

[PVSG05] J. D. Procaccino, J. M. Verner, K. M. Shelfer, and D. Gefen. What
do software practitioners really think about project success: an ex-
ploratory study. The Journal of Systems and Software, 78(2):194–203,
2005.

[Pyx] Pyxisnet limited. http://www.pyxisnet.com (last access January
2010).

[Ras] Rasis bd limited. http:/www./rasisbd.com(last access January
2010).

[RH09] P. Runeson and M. Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14(2):131–164, 2009.

[RKC96] H. Raghav Rao, N. Kichan, and A. Chaudhury. Information systems
outsourcing. Communication of the ACM, 39(7):27–28, 1996.

[RL00] J. Ropponen and K. Lyytinen. Components of software development
risk: How to address them? a project manager survey. IEEE Transac-
tions on Software Engineering, 26(2):98–112, 2000.

[Rop99] J. Ropponen. Risk assessment and management practices in software
development. In In: Willcocks, L.P., Lester, S. (Eds.), Beyond the IT Pro-
ductivity Paradox;john Wiley & Sons, Chichester. pp. 247-266., 1999.

[Ros97] S. M. Ross. Introduction to Probability Models. Academic Press, 1997.

[Roy04] G. Roy. A risk management framework for software engineering
practice. In ASWEC ’04: Proceedings of the 2004 Australian Software
Engineering Conference, page 60, Washington, DC, USA, 2004. IEEE
Computer Society.

[RPJLNA06] R. Evaristo R. Prikladnicki and M. H. Yamaguti J. L. N. Audy. Risk
management in distributed it projects: Integrating strategic, tactical,
and operational levels. International Journal of e-Collaboration, 2:1–18,
2006.

[Saa96] T. Saarinen. An expanded instrument for evaluating information sys-
tem success. Information and Management, 31(2):103–118, 1996.

[SB03] H. M. Sneed and P. Brössler. Critical success factors in software
maintenance-a case study. In ICSM ’03: Proceedings of the Interna-
tional Conference on Software Maintenance, page 190, Washington, DC,
USA, 2003. IEEE Computer Society.

[Sch] B. Schätz. Model-based development of software systems: From
models to tools. Habilitation, Technische Universität München, 2008.

[Sch97] Roy C. Schmidt. Managing delphi surveys using nonparametric sta-
tistical techniques. Decision Sciences, 28(3):763–774, 1997.

[Sch04] K. Schwalbe. Information Technology Project Management. Course Tech-
nology Press, Boston, MA, United States, 2004.

[Sch08] B. Schneier. The psychology of security.
http://www.schneier.com/essay-155.pdf, January 2008.

[SDJ07] Dag I. K. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical
methods in software engineering research. In FOSE ’07: 2007 Future
of Software Engineering, pages 358–378, Washington, DC, USA, 2007.
IEEE Computer Society.

[SFI09] S.Wagner, D. Mendez Fernandez, S. Islam, and K. Lochmann. . A
security requirements approach for web systems. In Proc. Workshop
Quality Assessment in Web (QAW 2009), 2009.

183

www.manaraa.com

Bibliography

[Sha76] Glenn Shafer. A Mathematical Theory of Evidence. Princeton University
Press,Princeton, NJ, 1976.

[SJ94] F. Sisti and S. Joseph. Software risk evaluation method version 1.0.
Technical report, SEI,Carnegie -Mellon University, 1994.

[SLKC01] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule. Identifying software
project risks: An international delphi study. Journal of Management
Information Systems, 17(4):5–36, 2001.

[Smi89] M.J. Smithson. Ignorance and Uncertainty: Emerging Paradigms.
Springer-Verlag, 1989.

[S.N09] S.N.Geethalakshmi. Non-technical components of software devel-
opment and their influence on success and failure of software de-
velopment. In Proceedings of CONSEG-09: International Conference on
Software Engineering, 2009.

[Sne96] H. M. Sneed. Modelling the maintenance process at zurich life in-
surance. In ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, page 217, Washington, DC, USA, 1996. IEEE
Computer Society.

[SNKT08] Z. Sheng, M. Nakano, S. Kubo, and H. Tsuji. New Frontiers in Artificial
Intelligence, Risk Bias Externalization for Offshore Software Outsourcing
by Conjoint Analysis. Springer Berlin / Heidelberg, 2008.

[Sou] Southtech limited. http://www.southtechlimited.com, last access
2009.

[Spe] Spectrum engineering consortium limited. http://www.spectrum-
bd.com (last October 2010).

[SPHP02] B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-based de-
velopment of embedded systems. In OOIS ’02: Proceedings of the
Workshops on Advances in Object-Oriented Information Systems, pages
298–312, London, UK, 2002. Springer-Verlag.

[SS96] S. J. Stephen and D. A. Schkade. A psychological approach to deci-
sion support systems. Management and Science, 42(1):51–64, 1996.

[SS97] Ian Sommerville and Pete Sawyer. Requirements Engineering - A Good
Practice Guide. John Wiley and Sons, Inc., 1997.

[TBK99] D.P. Truex, R. Baskerville, and H. Klein. Growing systems in emer-
gent organizations. Communications of ACM, 42(8):117–123, 1999.

[Tha02] R. H. Thayer. The Project Manager’s Guide to Software Engineering’s
Best Practices. IEEE Computer Society Press, Los Alamitos, CA, USA,
2002.

[TSY+07] H. Tsuji, A. Sakurai, K. Yoshida, A. Tiwana, and A. Bush.
Questionnaire-based risk assessment scheme for japanese offshore
software outsourcing. In Software Engineering Approaches for Offshore
and Outsourced Development (SEAFOOD07), page 114127. LNCS 4716,
2007.

[TTL00] D. Tapscott, D. Ticoll, and A. Lowy. Digital Capital: Harnessing the
Power of Business Webs. Harvard Business School Press, Boston, 2000.

[vL09] A. van Lamsweerde. Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[vLL00] A. van Lamsweerde and E. Letier. Handling obstacles in goal-
oriented requirements engineering. IEEE Transactions on Software En-
gineering, 26:978–1005, 2000.

184

www.manaraa.com

Bibliography

[VM04] D. Verdon and G. McGraw. Risk analysis in software design. IEEE
Security and Privacy, 2(4):79–84, 2004.

[Vos00] D. Vose. Risk Analysis: A Quantitative Guide. John Wiley & Sons Ltd,
2000.

[WA95] C. Wohlin and M. Ahlgren. Soft factors and their impact on time to
market. Software Quality Journal, 4:189–205, 1995.

[Wag09] S. Wagner. A bayesian network approach to assess and predict soft-
ware quality using activity-based quality models. In PROMISE ’09:
Proceedings of the 5th International Conference on Predictor Models in
Software Engineering, pages 1–9, New York, NY, USA, 2009. ACM.

[WdOA05] K.P. B. Webster, K. de Oliveira, and N. Anquetil. A risk taxonomy
proposal for software maintenance. In ICSM ’05: Proceedings of the
21st IEEE International Conference on Software Maintenance, pages 453–
461, Washington, DC, USA, 2005. IEEE Computer Society.

[WDW08] S. Wagner, F. Deissenboeck, and S. Winter. Managing quality require-
ments using activity-based quality models. In WoSQ ’08: Proceedings
of the 6th international workshop on Software quality, pages 29–34, New
York, NY, USA, 2008. ACM.

[Wie03] Karl Eugene Wiegers. Software Requirements. Microsoft Press, Red-
mond, WA, USA, 2003.

[WK04] L. Wallace and M. Keil. Software project risks and their effect on
outcomes. Communications of the ACM, 47(4):68–73, 2004.

[WK07] W. Wu and T. Kelly. Combining bayesian belief networks and the
goal structuring notation to support architectural reasoning about
safety. In Computer Safety, Reliability, and Security, Lecture Notes in
Computer Science, 2007.

[WKR04] L. Wallace, M. Keil, and A. Rai. Understanding software project risk:
a cluster analysis. Information and Management, 42(1):115–125, 2004.

[WvMHR00] C. Wohlin, A. von Mayrhauser, M. Hst, and B. Regnell. Subjective
evaluation as a tool for learning from software project success. Infor-
mation and Software Technology, 42(14):983 – 992, 2000.

[Yin02] R. K. Yin. Case Study Research: Design and Methods, Third Edition, Ap-
plied Social Research Methods Series, volume 5. Sage Publications, Inc,
3rd edition, December 2002.

[YLL01] E. S.K. Yu, L. Liu, and Y. Li. Modelling strategic actor relationships
to support intellectual property management. In ER ’01: Proceedings
of the 20th International Conference on Conceptual Modeling, pages 164–
178, London, UK, 2001. Springer-Verlag.

[Yu96] E. Yu. Modelling strategic relationships for process reengineering. PhD
thesis, Toronto, Ont., Canada, Canada, 1996.

[Yu97] E. Yu. Towards modeling and reasoning support for early-phase re-
quirements engineering. In RE ’97: Proceedings of the 3rd IEEE Interna-
tional Symposium on Requirements Engineering, page 226, Washington,
DC, USA, 1997. IEEE Computer Society.

[Zad99] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy
Sets and Systems, 100:9–34, 1999.

185

	Introduction
	Background and Motivation
	Problem Domain
	Overall Goals of the Thesis
	Research Question

	Research Contribution
	The Approach
	Empirical Evaluation
	Structure of the Thesis

	Fundamentals and Related Work
	Basic Concepts
	Software Risk
	Risk Event and Likelihood

	Risk Management in Software Project
	Principals of Software Risk Management
	Risk Management Frameworks
	Risk Management Standards
	Current Practice of Risk Assessment

	Study results on software risk management
	Risk Factors
	Risk Factors in Global Software Development
	Risk factors impact on software project
	Software Risk Management Barriers
	Study Result on Software Project Success factors

	Requirements Engineering and Goal-Orientation
	i*/Tropos
	KAOS
	Summary of the Current Approaches

	Thesis Contributions

	Subjective Expert Judgement and Bayesian Belief Network
	Subjective Expert Judgement
	Bayesian Belief Network (BBN)
	Conclusion

	Holistic View of the Software Development Risk Management
	Holistic View of Software Development Risk Management at Early Development
	Project Success and Failure Factors
	Software Development Components
	Project Execution
	Process
	Product
	Quality
	Testing
	Requirements Faults
	Operation
	Maintenance
	Human
	Environment (Internal & External)

	Model Based Development
	Conclusion

	Goal-driven Software Development Risk Management Model(GSRM)
	GSRM Framework
	Levels of Abstraction
	Modeling Views
	GSRM Layers
	Meta-model

	Generic Process Model
	GSRM activities
	Activity 1: Initialize Goal-driven Risk Management
	Activity 2: Identify & Model Goals
	Activity 3: Identify & Model Obstacles
	Activity 4: Assess Risk
	Activity 5: Treat & Monitor Risk
	Artifact Type: Risk Specification

	Roles & Responsibilities
	Integration of GSRM into Requirements Engineering
	Artifact Oriented View
	Process Oriented View
	Initiation of GSRM into Requirements Engineering

	Conclusion of GSRM

	Evaluation
	Empirical Evaluation and Data Collection
	Difficulties for Empirical Study in Software Development Risk Management
	Study Constructs
	Validity of Study Results

	Study 1: Goal and Risk Factors in Offshore Outsourced Software Development
	Survey Method
	Result of the Survey
	Survey Study Conclusions

	Study 2: Integration of Risk Management Activities into Requirements Engineering
	Demonstration Integration of GSRM into Requirements Engineering
	Study Result
	Discussion
	Case Study Conclusions

	Study 3: Implementation and evaluation of a goal-driven risk management model
	Evaluation approach
	Evaluation of GSRM
	Introduction of GSRM Process
	Comparison of the Study Result with Previous Research
	Lessons Learned
	Study Validity
	Case Study Conclusion

	Goal-Risk Taxonomy
	Empirical Studies Conclusions

	Conclusion
	Outcome of the Research
	Conclusions about Research Questions
	Research Questions 1 and 2
	Research Questions 3 and 4

	Conclusions about Empirical Study Results
	 Limitations of the GSRM
	Future Research
	General Conclusions

	Appendix A: Closed Questions
	Appendix B: Open Questions
	Appendix C: Checklist for Requirements Errors

